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Estimating spinning binary parameters and testing alternative theories of gravity with LISA
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We investigate the effect of spin-orbit and spin-spin couplings on the estimation of parameters for
inspiralling compact binaries of massive black holes, and for neutron stars inspiralling into intermediate-
mass black holes, using hypothetical data from the proposed Laser Interferometer Space Antenna (LISA).
We work both in Einstein’s theory and in alternative theories of gravity of the scalar-tensor and massive-
graviton types. We restrict the analysis to nonprecessing spinning binaries, i.e. to cases where the spins are
aligned normal to the orbital plane. We find that the accuracy with which intrinsic binary parameters such
as chirp mass and reduced mass can be estimated within general relativity is degraded by between 1 and 2
orders of magnitude. We find that the bound on the coupling parameter !BD of scalar-tensor gravity is
significantly reduced by the presence of spin couplings, while the reduction in the graviton-mass bound is
milder. Using fast Monte Carlo simulations of 104 binaries, we show that inclusion of spin terms in
massive black-hole binaries has little effect on the angular resolution or on distance determination
accuracy. For stellar-mass inspirals into intermediate-mass black holes, the angular resolution and the
distance are determined only poorly, in all cases considered. We also show that, if LISA’s low-frequency
noise sensitivity can be extrapolated from 10�4 Hz to as low as 10�5 Hz, the accuracy of determining both
extrinsic parameters (distance, sky location) and intrinsic parameters (chirp mass, reduced mass) of
massive binaries may be greatly improved.

DOI: 10.1103/PhysRevD.71.084025 PACS numbers: 04.30.Db, 04.25.Nx, 04.80.Nn, 95.55.Ym
I. INTRODUCTION

The Laser Interferometer Space Antenna (LISA) is being
designed to detect gravitational-wave (GW) signals in the
frequency band between 10�4 Hz and 10�1 Hz [1].
Ground-based interferometers such as LIGO, GEO,
VIRGO and TAMA are sensitive in a higher frequency
band, between 10 Hz and 103 Hz. Operating at these low
frequencies, LISA can detect, among other sources, inspi-
rals and mergers of massive black holes (MBH) with
masses in the range 104–107M�. Another promising source
is the inspiral and capture of stellar-mass compact ob-
jects—such as neutron stars (NS) or black holes (BH)—
by intermediate-mass black holes with masses in the range
102–105M�.

Gravitational radiation reaction drives the inspiral of
these binaries. The amplitude and phase of the
gravitational-wave signal carry information about binary
parameters, such as masses and spins, and about the loca-
tion and distance of the binary. They may also be different
in different theories of gravity. Therefore LISA can provide
important astrophysical information, yield interesting tests
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of fundamental physics, and place bounds on alternative
theories of gravity. In this paper, we consider, along with
standard general relativity, theories of the scalar-tensor
type (the simplest exemplar being that of Brans and
Dicke) and theories with an effective mass in the propaga-
tion of gravitational waves (which we call massive graviton
theories, for short). In scalar-tensor theories the phasing
evolution is modified predominantly by the presence of
dipole gravitational radiation reaction in the orbital evolu-
tion (in general relativity the lowest radiative multipole
moment is the quadrupole). In massive graviton theories
the gravitational-wave propagation speed depends on
wavelength: this generates a distortion in the time of arrival
(and in the wave phasing) with respect to general relativity,
similar to the dispersion of radio waves by interstellar
plasma.

Previous papers [2–6] derived bounds on the graviton
mass, on the Brans-Dicke parameter !BD and on parame-
ters describing more general scalar-tensor theories under
the assumption that the compact objects do not carry spin.
In this paper we investigate the effect of spin-orbit and
spin-spin couplings both on the estimation of astrophysical
parameters within general relativity, and on bounds that
can be placed on alternative theories. We restrict our
analysis to nonprecessing spinning binaries, i.e. binaries
whose spins are perpendicular to the orbital plane. The
effect of nonaligned spins and the resulting precessions
will be considered in future work.

Within Einstein’s general relativity, various authors have
investigated the accuracy with which LISA can determine
binary parameters including spin effects. Cutler [7] deter-
mined LISA’s angular resolution and evaluated the errors
on the binary masses and distance considering spins
-1  2005 The American Physical Society
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aligned or antialigned with the (orbital) angular momen-
tum. Hughes [8] investigated the accuracy with which the
redshift can be estimated (if the cosmological parameters
are derived independently), and considered the black-hole
ring-down phase in addition to the inspiralling signal. Seto
[9] included the effect of finite armlength (going beyond
the long wavelength approximation) and found that the
distance and angular resolution accuracy improve. This
happens because the response of the instrument when the
armlength is finite depends strongly on the location of the
source, which is tightly correlated with the distance and the
direction of the orbital angular momentum. Vecchio [10]
provided the first estimate of parameters for precessing
binaries when only one of the two supermassive black
holes carries spin. He showed that modulational effects
decorrelate the binary parameters to some extent, resulting
in a better estimation of the parameters compared to the
case when spins are aligned or antialigned with angular
momentum. More recently, Hughes and Menou [11]
studied a class of binaries, which they denoted golden
binaries, for which the inspiral and ring-down phases could
be observed with good enough precision to carry out
valuable tests of strong-field gravity.

These earlier works (except for [11]) adopted analytical
approximations to LISA’s instrumental noise [7], aug-
mented by an estimate of white-dwarf confusion noise
[12] in the low-frequency band. In this paper we model
the LISA noise curve by a similar—albeit slightly up-
dated—analytical approximation [13]. This noise curve
has the advantage of being given in analytical form, and
reproduces very well the salient features of numerical
noise curves available online from the LISA Sensitivity
Curve Generator (SCG) [14], a tool sponsored by the
LISA International Science Team.

Our central conclusions are as follows. Inclusion of
nonprecessing spin-orbit and spin-spin terms in the
gravitational-wave phasing generally reduces the accuracy
with which the parameters of the binary can be estimated.
This is not surprising, since the parameters are highly
correlated, and adding parameters effectively dilutes the
available information. Such an effect has already been
described within Einstein’s general relativity in the context
of ground-based detectors of the LIGO/VIRGO type
[15,16]. For example, for massive black-hole binaries at
3 Gpc, we find that including spin-orbit terms degrades
the accuracy in measuring chirp mass by factors of order
10, and in measuring the reduced mass parameter by
factors of order 20–100; while including spin-spin terms
further degrades these accuracies by factors of order 3
and 5, respectively. For neutron stars inpiralling into
intermediate-mass black holes (IMBH) with masses be-
tween 1000 and 104 solar masses, the corresponding re-
ductions are factors of order 20 and 5–30 in chirp mass and
reduced mass parameter, respectively, when spin-orbit is
included, and additional factors of order 4 and 7, respec-
tively, when spin-spin terms are included.
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When we consider placing bounds on alternative theo-
ries of gravity, for technical reasons, we treat only spin-
orbit terms. The source of choice to place bounds on the
coupling parameter !BD of scalar-tensor gravity is the
inspiral of a neutron star into an intermediate-mass black
hole. We first reproduce results of earlier work [5], apart
from small differences arising from corrected normaliza-
tion of the LISA noise curve. Including spin-orbit effects
reduces the bound on !BD significantly, by factors of order
10–20. For example for a 1:4M� neutron star inspiralling
into a 400M� black hole, the bound on!BD goes from 8�
105 to 40 000 when spin-orbit terms are included. The
latter bound should be compared with the bound of
40 000 from Cassini measurements of the Shapiro time
delay [17].

The effect of including spin on bounding the graviton
mass is more modest. In this case, the source of choice is
the inspiral of binaries of massive black holes. For masses
ranging from 105M� to 107M�, the reduction in the bound
induced by the inclusion of spin-orbit terms is only a factor
of 4 to 5.

We consider the effect of spin terms on the angular and
distance resolution of LISA. We find that spin couplings
have a mild effect on the angular resolution, on the distance
and, as a consequence, on the redshift determination for
massive black-hole binaries. By contrast, for stellar mass
objects inspiralling into intermediate-mass black holes,
neither distance nor location on the sky is very well
determined.

LISA can observe massive black-hole binaries with large
SNR out to large values of the cosmological redshift. If the
corresponding mass and distance determinations are accu-
rate enough, LISA will be an invaluable tool to study
structure formation in the early Universe. Using Monte
Carlo simulations we find that LISA can provide accurate
distance determinations out to redshift z� 2 for source
masses �107M�, and out to z� 4 for source masses
�106M�. Mass determinations strongly depend on an
accurate treatment of spin effects.

Finally, we study the effect of LISA’s low-frequency
sensitivity on the accuracy of estimating parameters for
massive black-hole binaries (similar investigations can be
found in [18,19]). Below 10�4 Hz, the noise characteristics
of LISA are uncertain. We show, however, that if LISA’s
noise spectral density can be uniformly extrapolated from
10�4 to 10�5 Hz, then the accuracy of estimating both
extrinsic parameters such as distance and sky position
and intrinsic parameters such as chirp mass and reduced
mass, as well as the graviton mass, can be significantly
higher, especially for higher-mass systems.

The paper is organized as follows. In Sec. II A we
discuss the procedure for estimating binary parameters
and the parameters of alternative theories when we average
over all sky directions and binary orientations; this essen-
tially ignores modulational effects due to the motion of the
-2
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spacecraft. In Sec. II B we relax this assumption, and
present the relevant equations for estimation for a given
source direction and orientation. In Sec. II C, we discuss
the LISA noise curve to be used. Section III presents our
results. In Sec. III A we show the results for estimates
assuming averaging over directions. In Sec. III B we carry
out a Monte Carlo analysis of 104 binaries distributed over
the angles describing the relative orientation of the binary
with respect to LISA and discuss the accuracy with which
binary parameters can be estimated. Though somewhat
more accurate, this procedure is still affected by various
approximations. In Sec. III C we use Monte Carlo simula-
tions to investigate the dependence of parameter estimation
on the redshift of the source. In Sec. III D we study the
effect of the LISA low-frequency noise. Section IV sum-
marizes our main conclusions. In Appendix A we summa-
rize for completeness the main equations used in this paper
to describe LISA’s configuration, orientation and response,
as derived in Ref. [7]. In Appendix B we discuss some
subtleties in estimating binary parameters within the Fisher
matrix formalism in alternative theories of gravity when
we include spin effects.

Throughout this paper we use units in whichG � c � 1.

II. ESTIMATION OF PARAMETERS IN
NONPRECESSING SPINNING COMPACT

BINARIES

We assume that two independent Michelson outputs
h	�t� with 	 � I; II can be constructed from the readouts
of the three LISA arms if the noise is totally symmetric
(see, for example, [7]). We take two approaches to estimat-
ing parameters. In the first approach (Sec. II A), we
assume that the orientation and location of the source
and the orientation of LISA are unimportant in estimating
intrinsic parameters such as masses or theory-dependent
parameters. These orientation dependences are con-
tained in a number of angle-dependent functions, called
pattern functions. Accordingly, we derive results using
only one Michelson output, and we average over the pat-
tern functions.

In the second approach (Sec. II B), we are also interested
in the accuracy of determination of direction and distance
to the source, and thus we do not wish to average a priori
over pattern functions. Instead, we carry out Monte Carlo
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simulations of measurements using a population of sources
across the sky, and we study the distribution of accuracies
of parameter estimation. In this case, we use both one and
two Michelson detectors. We use the by now standard
machinery of parameter estimation in matched filtering
for gravitational wave detection that has been developed
by a number of authors [15,20–22].

A. Parameter estimation using pattern-function
averaging

The Fourier transform of the waveform for one
Michelson LISA detector, in the stationary phase approxi-
mation (SPA), and after averaging over the pattern func-
tions, is given by

~h	�f� �

���
3

p

2
Af�7=6ei �f�; 	 � I; II; (2.1a)

A �
1������

30
p

�2=3
M5=6

DL
; (2.1b)

where f is the frequency of the gravitational waves, M �

�3=5M is the ‘‘chirp’’ mass, with M � m1 	m2 and � �
m1m2=M2, andDL is the luminosity distance to the source.

We have adopted the standard ‘‘restricted post-
Newtonian approximation’’ for the waveform, in which
the amplitude is expressed to the leading order in a
post-Newtonian expansion (an expansion for slow-
motion, weak-field systems in powers of v� �M=r�1=2 �
��Mf�1=3), while the phasing  �f�, to which laser inter-
ferometers are most sensitive, is expressed to the highest
post-Newtonian (PN) order reasonable for the problem at
hand. For binaries with spins aligned (or antialigned) and
normal to the orbital plane, this is a valid approximation
because the amplitude varies slowly (on a radiation reac-
tion time scale) compared to the orbital period. But when
the spins are not aligned, modulations of the amplitude on a
precession time scale must be included. Such modulations
are beyond the scope of this paper.

The phasing function  �f� is known for point masses up
to 3.5 PN order [23,24]. But spin terms are known only up
to 2PN order, so to be reasonably consistent, we will
include in the phasing point-mass terms only up to this
same 2PN order. The needed expression for the phasing is
 �f� � 2�ftc ��c 	
3

128
��Mf��5=3

�
1�

5S2

84!BD
�2=5��Mf��2=3 �

128

3

�2DM

�2g�1	 z�
��Mf�2=3

	

�
3715

756
	
55

9
�
�
��2=5��Mf�2=3 � 16���3=5��Mf� 	 4���3=5��Mf�

	

�
15 293 365

508 032
	
27 145

504
�	

3085

72
�2
�
��4=5��Mf�4=3 � 10���4=5��Mf�4=3

�
: (2.2)

The structure of the phasing function is as follows: the first two terms are related to the time tc and phase �c of
coalescence; they are parameters that essentially establish where the waveform begins or ends. The prefactor of the
-3
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expression in braces, together with the first term (‘‘1’’)
inside the braces, is the standard phasing from the lowest-
order quadrupole approximation of general relativity.
Inside the braces is a post-Newtonian expansion in powers
of v� ��Mf�1=3. The second term is the contribution of
dipole gravitational radiation in Brans-Dicke theory. Let us
define the scalar charge of the ith body by 	i � �		̂i �
�	�1� 2si�, where �	2 � 1=�2!BD 	 3� � �2!BD�

�1 in the
limit !BD 
 1, and si is called the sensitivity of the ith
body (a measure of the self-gravitational binding energy
per unit mass). Then the coefficient in the dipole term is
S � �	̂1 � 	̂2�=2. The fact that it is dipole radiation means
that it is proportional to v�2 compared to the quadrupole
term, but the small size of S and the large current solar-
system bound on !BD make this a small correction, never-
theless. The third term in the braces is the effect of a
massive graviton, which alters the arrival time of waves
of a given frequency, depending on the size of the graviton
Compton wavelength �g and on a distance quantity D,
defined below. The remaining terms in the braces are the
standard general relativistic, post-Newtonian terms, in-
cluding spin effects.

The quantities � and � represent spin-orbit and spin-
spin contributions to the phasing, given by

� �
1

12

X2
i�1

�i

�
113

m2i
M2 	 75�

�
L̂ � Ŝi; (2.3a)

� �
�
48
�1�2��247Ŝ1 � Ŝ2 	 721L̂ � Ŝ1L̂ � Ŝ2�; (2.3b)

where Ŝi and L̂ are unit vectors in the direction of the spins
and of the orbital angular momentum, respectively, and
Si � �im

2
i Ŝi. For black holes, the dimensionless spin pa-

rameters �i must be smaller than unity, while for neutron
stars, they are generally much smaller than unity. It follows
that j�j & 9:4 and j�j & 2:5.

We assume that any modifications to the post-Newtonian
general relativistic terms listed in the phasing formula that
might be generated in Brans-Dicke theory or in massive
graviton theories will be of order 1=!BD  1 or
1=�f�g�  1 relative to those terms, and hence we will
ignore such corrections.

In this paper we denote by M and M the observed chirp
and total masses. They are related to masses measured in
the source rest frame by

M � �1	 z�Msource; M � �1	 z�Msource; (2.4)

where z is the cosmological redshift.
Henceforth, to simplify the notation we define

$ �
1

!BD
; (2.5a)

�g �
�2DM

�2g�1	 z�
: (2.5b)

To estimate the binary and gravitational theory parameters,
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we use the standard technique of parameter estimation in
matched filtering. By maximizing the correlation between
a template waveform that depends on a set of parameters
�a (for example, the chirp mass M) and a measured signal,
matched filtering provides a natural way to estimate the
parameters of the signal and their errors. With a given noise
spectral density for the detector, Sn�f�, one defines the
inner product between two signals h1�t� and h2�t� by

�h1jh2� � 2
Z 1

0

~h�1 ~h2 	 ~h�2 ~h1
Sn�f�

df; (2.6)

where ~h1�f� and ~h2�f� are the Fourier transforms of the
respective gravitational waveforms h�t�. The signal-to-
noise ratio (SNR) for a given h is given by

#�h� � �hjh�1=2: (2.7)

If the waveforms may be characterized by a set of parame-
ters �a, then one defines the ‘‘Fisher matrix’’ �ab with
components given by

�ab �
�
@h
@�a

j
@h

@�b

�
: (2.8)

In the limit of large SNR, if the noise is stationary and
Gaussian, the probability that the GW signal s�t� is char-
acterized by a given set of values of the source parameters
�a is

p��js� � p�0���� exp
�
�
1

2
�ab��a��b

�
: (2.9)

where ��a � �a � �̂a, and p�0���� represents the distribu-
tion of prior information. An estimate of the rms error,
��a, in measuring the parameter �a can then be calculated,
in the limit of large SNR, by taking the square root of the
diagonal elements of the inverse of the Fisher matrix,

��a �
��������
 aa

p
;  � ��1: (2.10)

The correlation coefficients between two parameters �a

and �b are given by

cab �  ab=
����������������
 aa bb

p
: (2.11)

We may wish to take into account our prior information on
the maximum spin; we do this in a crude way by assuming

p�0���� / exp
�
�
1

2
��=9:4�2 �

1

2
��=2:5�2

�
: (2.12)

The following derivatives of ~h will be needed:
-4



ESTIMATING SPINNING BINARY PARAMETERS AND . . . PHYSICAL REVIEW D 71, 084025 (2005)
@~h
@ lnA

� ~h; (2.13a)

@~h
@tc

� 2�if~h; (2.13b)

@~h
@�c

� �i ~h; (2.13c)

@~h
@$

� �
5i

3584
S2�2=5��Mf��7=3 ~h; (2.13d)

@~h
@�g

� �
i

�Mf
~h; (2.13e)

@~h
@ lnM

� �
5i

128
��Mf��5=3�K4v

�2 	 1	 A4v
2 	 B4v

3

	 C4v
4�~h; (2.13f)

@~h
@ ln�

� �
i

96
��Mf��5=3�K5v

�2 	 A5v
2

	 B5v3 	 C5v4�~h; (2.13g)

@~h
@�

� �
3i

32
��3=5��Mf��2=3 ~h; (2.13h)

@~h
@�

� �
15i

64
��4=5��Mf��1=3 ~h; (2.13i)

where here we denote v � ��Mf�1=3 and

K4 � �
S2

12
$; (2.14a)

A4 �
4

3

�
743

336
	
11

4
�
�
�
128

5
�g�2=5; (2.14b)

B4 �
8

5
��� 4��; (2.14c)

C4 � 2
�
3 058 673

1 016 064
	
5429

1008
�	

617

144
�2 � �

�
; (2.14d)

K5 �
3S2

56
$; (2.14e)

A5 �
�
743

168
�
33

4
�
�
; (2.14f)

B5 �
27

5
��� 4��; (2.14g)

C5 � 18
�
3 058 673

1 016 064
�
5429

4032
��

617

96
�2 � �

�
: (2.14h)

For all integrals appearing in the Fisher matrix we will pick
the final frequency, or the upper limit of integration to be
ffin � min�fISCO; fend�. Here fISCO is twice the conven-
tional (Schwarzschild) frequency of the innermost
stable circular orbit for a point mass, namely fISCO �

�63=2�M��1, and fend � 1 Hz is a conventional upper cut-
off on the LISA noise curve. The initial frequency fin in the
integrals of the Fisher matrix is determined by assuming
that we observe the inspiral over a time Tobs before the
ISCO, and by selecting a cutoff frequency below which the
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LISA noise curve is not well characterized. Our default
cutoff is flow � 10�5 Hz; in Sec. III D we analyze the
effects of increasing this cutoff frequency to reflect a less
optimistic understanding of LISA’s low-frequency noise.
The initial frequency is then given, in Hz, by the larger of
these frequencies,

fin � max
�
flow; 4:149� 10�5

�
M

106M�

�
�5=8

�
Tobs
1 yr

�
�3=8

�
:

(2.15)

The frequency at a given observation time is calculated
using the quadrupole approximation for radiation damping.
In our calculations we assume that Tobs � 1 yr.

Since we anticipate setting only lower bounds on !BD
and �g, we choose the nominal values $ � 0 and �g � 0
in Eqs. (2.14). For simplicity, we will also assume that we
are estimating spins in the case where spins are dynami-
cally small. This is generally the case for neutron stars (see
[25] for discussion); for black holes, it means that we are
considering only slowly rotating (nonextremal) black
holes. Consequently we also choose the nominal values
� � � � 0 in Eqs. (2.14).

For a zero–spatial-curvature Universe (-, � 0;-. 	
-M � 1), the luminosity distance is given by

DL �
1	 z
H0

Z z

0

dz0

�-M�1	 z0�3 	-.�
1=2
: (2.16)

The quantity D appearing in Eq. (2.5b) is defined by
(-, � 0)

D �
1	 z
H0

Z z

0

dz0

�1	 z0�2�-M�1	 z0�3 	-.�
1=2
; (2.17)

(see Eq. (2.5) of [4]). For the Hubble constant we assume
H0 � 72 kms�1Mpc�1, according to the present observa-
tional estimates [26].

A useful quantity to characterize the effect of the various
terms (Brans-Dicke, massive graviton, spin couplings and
PN corrections) on the evolution of the GW frequency is
the number of GW cycles accumulated within a certain
frequency band. This quantity is defined as:

N GW �
Z ffin

fin

f
_f
df: (2.18)

To derive the number of cycles contributed by individual
terms in the phasing, we use an expression for _f that
includes post-Newtonian GR terms, plus the Brans-Dicke
and graviton-mass contributions, given by

df
dt

�
96

5�M2 ��Mf�11=3
�
1	

5S2$
48

�2=5��Mf��2=3

	
96�g
5

��Mf�2=3 	 PN corrections
�
; (2.19)

where the ‘‘PN corrections’’ up to 2PN order, including
-5



TABLE I. Number of GW inspiral cycles contributed by different PN orders for different NS-BH binaries. We assume S � 0:3 and
an observation time Tobs � 1 yr. In the bottom section of the table, we normalize the number of cycles associated with the Brans-Dicke
parameter to $ (first row) and to the Cassini bound !BD >!Cassini � 4� 104 (second row). We also show the initial and final GW
frequencies, assuming an upper cutoff of 1.0 Hz for the LISA noise curve.

PN order �1:4	 400�M� �1:4	 1000�M� �1:4	 5000�M� �1:4	 104�M�

fin�Hz� 4:601� 10�2 3:658� 10�2 2:446� 10�2 2:057� 10�2

ffin�Hz� 1.000 1.000 0.8792 0.4397

Newtonian 2 294 904 1 828 036 1 224 122 1 025 711
1PN 35 366 44 712 67 309 78 460
Tail �18 064 �29 081 �66 278 �89 793
Spin-orbit 1437� 2314� 5274� 7145�
2PN 422 868 3016 4653
Spin-spin �139� �288� �1001� �1545�

Brans-Dicke �3 560 569$ �1 793 782$ �536 954$ �319 126$
Brans-Dicke �89 !Cassini=!BD �45 !Cassini=!BD �13 !Cassini=!BD �8:0 !Cassini=!BD
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spin terms, can be found in [25]. When we include the
massive-graviton term, the frequency f and time t appear-
ing in Eq. (2.19) should be considered as the arrival
frequency and time, respectively (the number of
gravitational-wave cycles due to the massive graviton
being an effective number of cycles seen by the observer
at the detector location).

Contributions of individual terms in the integral (2.18)
are generally considered significant if they exceed one
wave cycle over the observation time. For various ex-
amples of the two source targets discussed in this paper,
NS inspiral into IMBH, and MBH binaries, we show the
individual contributions to the number of cycles, along
with the initial and final frequencies, in Tables I and II,
respectively.

With the restricted post-Newtonian form for ~h in

Eq. (2.1), we can express the SNR
���������
h#2i

p
in the form
TABLE II. Number of GW inspiral cycles contributed by different
time Tobs � 1 yr. In the bottom section of the table, we normalize th
(first row), and to the Compton wavelength �g, using Eq. (2.5b) (sec
0:3 and -. � 0:7.

PN order �107 	 107�M� �107 	 106�M�

fin�Hz� 1:073� 10�5 2:361� 10�5

ffin�Hz� 2:199� 10�4 3:997� 10�4

Newtonian 535 1174
1PN 55 115
Tail �48 �127
Spin-orbit 4� 10�
2PN 4 8
Spin-spin �1� �2�

Massive graviton �209�g �333�g
Massive graviton �1063 �1015 km=�g�

2 �478 �1015 km=�g�
2 �

084025
���������
h#2i

q
� 6:245� 10�23

�
M
M�

�
5=6
�1=2

�
1Gpc

DL

�

�

����������������������������������Z fend

fin

3

4

f�7=3

Sh�f�
df

vuut ; (2.20)

where angular braces mean that we are averaging over
LISA pattern functions.

B. Parameter estimation without averaging over
pattern functions

In this section we consider parameter estimation without
averaging over the relative orientation of the binary with
respect to LISA. We assume, as in [7], that two independent
Michelson outputs can be constructed from the readouts of
the three LISA arms if the noise is totally symmetric. The
signal measured by LISA, h	�t� with 	 � I; II, can be
PN orders for high-mass BH binaries. We assume an observation
e number of cycles associated with the graviton-mass term to �g
ond row). We assume a luminosity distance DL � 3 Gpc, -M �

�106 	 106�M� �105 	 104�M� �104 	 104�M�

4:525� 10�5 4:199� 10�4 8:046� 10�4

2:199� 10�3 3:997� 10�2 0:2199

2267 21 058 40 369
134 677 769
�92 �450 �308
7� 36� 25�
6 18 12

�1� �5� �3�

�512�g �1967�g �2926�g
260 �1015 km=�g�

2 �28 �1015 km=�g�
2 �15 �1015 km=�g�

2
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written as:

h	�t� �

���
3

p

2

2m1m2
r�t�DL

~A	�t�

� cos

 Z t

0
f�t0�dt0 	 ’p;	�t� 	 ’D�t�

!
; (2.21)

where r�t� is the relative distance between the two compact
bodies, ’p;	�t� is the waveform polarization phase [see
Eq. (A4a)] and ’D�t� the Doppler phase [see Eq. (A4b)].
~A	�t� is defined by

~A	�t� �
�������������������������������������������������������������������������
�1	 �L̂ � n�2�2F	2

	 	 4�L̂ � n�2F�2
	

q
; (2.22)

where L̂ is the orbital angular momentum unit vector, and
084025
n is a unit vector in the direction of the source on the sky.
The quantities F	;�

	 are the pattern functions, defined by
Eqs. (A1) and (A2). The Fourier transform of the measured
signal can be evaluated in the stationary phase approxima-
tion, since ~A	�t�, ’p;	�t� and ’D�t� vary on time scales on
the order of 1 yr (thus much larger than the binary orbital
period �2=f). The result is

~h 	�f� �

���
3

p

2
Af�7=6ei6�f�

�
5

4
~A	�t�f��

�
e�i�’p;	�t�f��	’D�t�f���;

(2.23)

where to 2PN order (including also the Brans-Dicke pa-
rameter and the graviton-mass term) t�f� is given by
t�f� � tc �
5

256M
��Mf��8=3

�
1�

S2$
12

�2=5��Mf��2=3 �
4�g
3

��Mf�2=3 	
4

3

�
743

336
	
11

4
�
�
��2=5��Mf�2=3

�
8

5
�4�� ����3=5��Mf� 	 2

�
3 058 673

1 016 064
	
5429

1008
�	

617

144
�2 � �

�
��4=5��Mf�4=3

�
: (2.24)

In Appendix A, using equations of Ref. [7], we show how to express the angular parts of ~h	�f� in terms of the angles ��S,
��S, ��L, ��L, which describe the source location and orbital angular momentum direction in the reference frame attached to

the solar system barycenter. To evaluate the Fisher matrix we use the derivatives with respect to the parameters M, �, �,
�,�c, tc, lnA, $ and �g, given by Eqs. (2.13). We also determine analytically the angular derivatives with respect to ��S,
��S, ��L, ��L using formulas given in Appendix A. The final results are lengthy and unenlightening, so we do not write them

down here. We choose to evaluate the angular derivatives analytically since this is likely to be more accurate than the
numerical finite-differencing adopted in Refs. [7,8]. As before, we choose the nominal values $ � �g � � � � � 0.

The nonaveraged SNR is (	 � I; II)

#	� ��S; ��S; ��L; ��L� � 7:807� 10�23
�
M
M�

�
5=6
�1=2

�
1Gpc

DL

� ����������������������������������������������������������������������������������Z fend

fin

3

4
~A2	�t�f�; ��S; ��S; ��L; ��L�

f�7=3

Sh�f�
df

vuut : (2.25)
For some binary-mass configurations we estimate the
parameters using the two LISA detectors. In this case the
Fisher matrix is

�totab �
�
@hI
@�a

j
@hI
@�b

�
	

�
@hII
@�a

j
@hII
@�b

�
; (2.26)

and the rms error, ��a, in measuring the parameter �a is
��a �

��������
 aa

p
with  � ��tot��1. The total SNR is #tot �������������������

#2I 	 #2II
q

.
We expect that estimates obtained for parameters such as

M,�,�,�,$ and�g when we do not pattern average will
not differ qualitatively from those obtained using pattern-
averaged templates. As we will see, those parameters,
which appear in the phasing of the signal, are relatively
uncorrelated with the parameters appearing in the ampli-
tude, such as ��S, ��S, ��L, ��L.

C. Noise curve for the LISA instrument

The non-sky-averaged noise spectral density of LISA
depends on the relative orientation between the instrument
and the source, and it is very hard to implement in estimat-
ing binary parameters. Generally, the LISA community has
been using the so-called sky-averaged spectral density SSAh
[see e.g., Ref. [27] and the LISA Pre-Phase A Report]. The
sky-averaged spectral density is computed by a combina-
tion of three factors, including: (i) the raw spectral noise
density Sn, (ii) the gravitational-wave transfer (response)
function R and (iii) the noise transfer (response) function
Rn. They combine together in [28]

SSAh �
SnRn
R

: (2.27)

In this paper we are also interested in determining binary
parameters without averaging over the source location, so
we are not allowed, in principle, to use SSAh . To overcome
this difficulty we evaluate an effective non-sky-averaged
spectral density which gives the correct result at low
frequency, but is only approximately valid in the high-
frequency region. In the low-frequency limit, the GW
transfer function used in the LISA Sensitivity Curve
-7
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FIG. 1 (color online). Analytic approximation to the LISA root
noise spectral density curve used in this paper and in Ref. [13]
(dashed line) and the curve produced using the LISA Sensitivity
Curve Generator [14] (solid line). The SCG curve has been
multiplied by a factor of

�����������
3=20

p
to obtain an effective non-sky

averaged noise spectral density (see Sec. II C). The SCG noise
curve does not include the extragalactic white-dwarf confusion
noise while the analytical approximation curve does.
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Generator [14] is R � 4�
���
3

p
=2�21=5 � 3=5, where the fac-

tor �
���
3

p
=2�2 comes from the LISA arms being at 60

�
, the

factor 1/5 is due to the sky-average of the pattern functions
(hF2	;�i � 1=5) and the factor 4 depends on the particular
readout variable used. Since our definition of the GW
signal already includes the factor

���
3

p
=2 [see Eqs. (2.1a)

and (2.23)], to obtain the effective non-sky-averaged spec-
tral density we must multiply SSAh by �

���
3

p
=2�2=5 � 3=20.

The final result is:

SNSAh �f� �
�
9:18� 10�52

�
f
1Hz

�
�4

	 1:59� 10�41

	 9:18� 10�38
�
f
1Hz

�
2
�
Hz�1; (2.28)

and has been obtained also in Ref. [13]. We estimate white-
dwarf confusion noise following [13], which uses results
from [29,30]: the galactic contribution is approximated as

Sgalh �f� � 2:1� 10�45
�
f
1Hz

�
�7=3

Hz�1; (2.29)

and the contribution from extra-galactic white dwarfs as

Sex�galh �f� � 4:2� 10�47
�
f
1Hz

�
�7=3

Hz�1: (2.30)

We compute the total (instrumental plus confusion) noise
as

Sh�f� � minfSNSAh �f�= exp��,T�1
missiondN=df�; S

NSA
h �f�

	 Sgalh �f�g 	 Sex�galh �f�: (2.31)

Here dN=df is the number density of galactic white-dwarf
binaries per unit gravitational-wave frequency, for which
we adopt the estimate

dN
df

� 2� 10�3Hz�1
�
1Hz

f

�
11=3
; (2.32)

�f � T�1
mission is the bin size of the discretely Fourier trans-

formed data for a LISA mission lasting a time Tmission; and
, ’ 4:5 is the average number of frequency bins that are
lost when each galactic binary is fitted out. The factor
exp��,T�1

missiondN=df� thus represents the fraction of ‘‘un-
corrupted’’ bins where instrumental noise still dominates.
At variance with [13], in our calculations we always as-
sume that the duration of the LISA mission Tmission � 1 yr,
consistently with the choice we made for the observation
time Tobs in Eq. (2.15). The analytic root noise spectral
density curve (2.31) used in this paper is shown in Fig. 1
together with the corresponding root noise spectral density
curve from the LISA Sensitivity Curve Generator [14]. The
SCG curve shown is obtained using the nominal values
SNR � 1, arm length � 5� 109 m, telescope diameter �
0:3 m, laser wavelength � 1064 nanometers, laser power
� 1:0 Watts, optical train efficiency � 0:3, acceleration
noise � 3� 10�15 ms�2Hz�1=2, and position noise budget
084025
� 2� 10�11 mHz�1=2, with position noise setting the
floor at high frequency. The data returned by the SCG is
then multiplied by

�����������
3=20

p
to obtain the effective non-sky-

averaged curve shown in Fig. 1.
III. RESULTS OF PARAMETER ESTIMATION

A. Estimates using pattern-averaged templates

We begin with neutron-star inspirals into intermediate-
mass black holes. These are the best sources for bounding
scalar-tensor gravity, for the following reasons. In scalar-
tensor theory, dipole gravitational radiation is controlled by
the difference S � �	̂1 � 	̂2�=2 in the rescaled scalar
charge 	̂i between the two bodies. We recall that 	̂i �
�1� 2si� and

si �
�
@�lnmi�

@�lnGeff�

�
N
; (3.1)

where mi is the total mass of the body, Geff is the effective
gravitational constant at the location of the body (which is
related to the value there of the Brans-Dicke scalar field)
and the subscript N denotes that the number of baryons is
held fixed. For neutron stars, si can be substantial, and thus
	̂i can differ markedly from unity (	̂i � 0:6� 0:8), but
because it is only weakly dependent on the NS equation of
state and mass [31], the difference S for NS binaries is
typically S < 0:05, so NS-NS binaries do not provide
interesting bounds on Brans-Dicke theory [3] (see however
[6] for discussion of more general scalar-tensor theories).
Because of the no-hair theorem, for black holes 	̂BH � 0,
so BH-BH binaries cannot be used to put bounds on the
Brans-Dicke parameter via dipole radiation. Therefore,
following previous papers on the subject [2,3,5], we only
-8
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consider NS-BH binaries as sources for this purpose.
Furthermore, as shown earlier [2,5], inspiral into lower-
mass black holes gives the most promising bounds, pri-
marily because more cycles are observed in a given period
of integration in that case. The event rate of such inspirals
involving intermediate-mass black holes is uncertain, but is
likely to be very small [32,33]; only a lucky detection of
such an inspiral will lead to a suitable test. White-dwarf-
BH binaries could also be used to test Brans-Dicke theory,
since 	̂WD � 1 (sWD � 10�4), so that S � 0:5, except that
tidal effects will play a role in the late stages of the inspiral,
depending on the mass of the black hole (for discussion,
see [2]).

For concreteness we focus on four NS-BH binaries,
setting the NS mass MNS � 1:4M� and considering black
holes of mass MBH � 400, 100, 5000, and 104M�. The
borderline between massive and supermassive BHs is hazy,
but we choose not to consider NSs inspiralling into ‘‘super-
massive’’ BHs with M � 105–108M�. Even in the context
TABLE III. Errors and correlation coefficients for different NS-B
Dicke term) with and without spin-orbit and spin-spin terms. We co

PN order �tc ��c �M=M ��=� �� ��
(s) (%) (%)

�1:4	 400�M�

1 1.59 3.61 0.000 071 0 0.0206 � � � � �

1.5 3.00 15.6 0.000 148 0.149 � � � � �

1.5 4.07 28.1 0.000 478 0.375 0.003 46 � �

2 3.33 17.6 0.000 220 0.208 � � � � �

2 4.00 25.7 0.000 491 0.393 0.002 60 � �

2 16.2 508 0.002 66 3.85 0.206 1.9

�1:4	 1000�M�

1 1.86 3.41 0.000 086 1 0.0157 � � � � �

1.5 2.52 8.08 0.000 023 3 0.0369 � � � � �

1.5 4.45 25.2 0.000 560 0.275 0.006 18 � �

2 2.55 7.89 0.000 034 1 0.0439 � � � � �

2 4.33 21.8 0.000 584 0.297 0.005 60 � �

2 16.1 425 0.002 96 2.65 0.0705 0.79

�1:4	 5000�M�

1 2.55 3.19 0.000 123 0.0101 � � � � �

1.5 3.03 5.61 0.000 038 6 0.008 70 � � � � �

1.5 5.68 22.4 0.000 771 0.168 0.006 73 � �

2 3.00 5.18 0.000 036 0 0.0101 � � � � �

2 5.34 14.7 0.000 857 0.202 0.007 00 � �

2 18.5 349 0.003 86 1.52 0.0137 0.17

�1:4	 104�M�

1 3.33 3.43 0.000 154 0.009 14 � � � � �

1.5 3.96 5.82 0.000 060 7 0.005 82 � � � � �

1.5 8.60 26.7 0.001 03 0.163 0.007 37 � �

2 3.91 5.26 0.000 059 2 0.006 78 � � � � �

2 7.72 13.0 0.001 20 0.211 0.008 22 � �

2 34.6 487 0.005 76 1.66 0.0299 0.13
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of pure general relativity, our approximation that the binary
orbits be circular is expected to be unreliable for these
high-mass cases: for high mass ratios the binary is likely to
be formed by capture of the smaller body into the larger
one, and the eccentricity will not be washed out by radia-
tion reaction. Adding eccentricity complicates the analysis
to a level that is beyond the scope of this paper, and we plan
to return to this problem in the future.

We first consider the inspiral of these four representative
binaries within general relativity (omitting the BD term in
the phase). From the initial and ending frequencies listed in
Table I we see that these binaries sweep through the high
frequency part of the LISA band, say from �10�2 Hz up to
�1 Hz. In Table III we list the errors and correlation
coefficients that are obtained when we truncate the phasing
formula at various PN orders and include spin-orbit and
spin-spin effects. For consistency, at 1PN order we do not
include spin effects, at 1.5PN order we include only spin-
orbit effects, and at 2PN order we include both spin-orbit
H binaries at different PN orders in general relativity (no Brans-
nsider one detector and set # � 10.

cM� cM� c�� cM� c�� c��

� �0:995 � � � � � � � � � � � � � � �

� �0:999 � � � � � � � � � � � � � � �

� �0:996 0.951 �0:918 � � � � � � � � �

� �0:999 � � � � � � � � � � � � � � �

� �0:996 0.893 �0:849 � � � � � � � � �

1 �0:996 �0:981 0.994 �0:983 0.995 1.000

� �0:995 � � � � � � � � � � � � � � �

� �0:922 � � � � � � � � � � � � � � �

� �0:995 0.999 �0:991 � � � � � � � � �

� �0:965 � � � � � � � � � � � � � � �

� �0:996 0.998 �0:989 � � � � � � � � �

3 �0:996 �0:962 0.982 �0:980 0.994 0.997

� �0:995 � � � � � � � � � � � � � � �

� 0.941 � � � � � � � � � � � � � � �

� �0:995 0.999 �0:999 � � � � � � � � �

� 0.932 � � � � � � � � � � � � � � �

� �0:996 0.999 �0:999 � � � � � � � � �

8 �0:996 0.951 �0:920 �0:975 0.991 �0:860

� �0:995 � � � � � � � � � � � � � � �

� 0.965 � � � � � � � � � � � � � � �

� �0:996 0.998 �0:999 � � � � � � � � �

� 0.964 � � � � � � � � � � � � � � �

� �0:997 0.999 �0:999 � � � � � � � � �

3 �0:997 0.998 �0:989 �0:978 0.992 �0:961
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FIG. 2 (color online). Left: Luminosity distances DL of NS-BH binaries observed with SNR � 10 as a function of the black hole
mass. We assume that the NS mass MNS � 1:4M�. Right: SNR for equal-mass BH-BH binaries at DL � 3 Gpc as a function of the
total mass. Solid lines refer to the LISA noise curve (2.31) used in this paper; dashed lines refer to the same noise curve without
including the white-dwarf confusion noise. The ‘‘bump’’ in the noise curve due to white-dwarf confusion noise is responsible for the
dip in the SNR for MBH binaries of masses �106M�.
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and spin-spin effects. All results assume # � 10. In the left
panel of Fig. 2 we show the corresponding luminosity
distance as a function of the black hole mass MBH.

From Table III we see that the errors on all parameters
increase considerably when spin effects are taken into
account. This applies, in particular, to the chirp mass M
and the parameter �. This spin-induced degradation in
parameter estimation has long been known [15]: it occurs
because (in the absence of precessional effects) the pa-
rameters are highly correlated, so that adding parameters
effectively dilutes the available information.

For technical reasons, when we consider alternative
theories of gravity we only include spin-orbit effects. If
in addition we include spin-spin effects the dimensionality
TABLE IV. Errors and correlation coefficients in Brans-Dicke theo
consider one detector and set # � 10. In the first row we do not co
effects. When we include the spin-orbit term priors do not have an ap
give the bound !BD;unc that could be obtained (in principle) if all th
term.

�tc ��c �M=M ��=� !BD ��
(s) (%) (%)

�1:4	 400�M�, !BD;unc � 43 057 645
3.82 23.2 0.000 243 0.293 765 014 � � � �

7.95 76.7 0.00 657 2.50 39 190 0.0508 �

�1:4	 1000�M�, !BD;unc � 21 602 414
3.79 16.7 0.000 189 0.116 211 389 � � �

7.99 58.4 0.00 764 1.86 21 257 0.0557 �

�1:4	 5000�M�, !BD;unc � 6 388 639
4.60 12.5 0.000 600 0.0342 50 925 � � �

8.79 23.4 0.0114 1.33 6486 0.0550 �

�1:4	 104�M�, !BD;unc � 3 768 347
6.59 13.8 0.000 877 0.0253 26 426 � � �

13.6 15.5 0.0178 1.61 3076 0.0706 �

084025
of the Fisher matrix increases, and the matrix inversion
required to obtain the correlation matrix appears to be
unreliable. This issue is addressed in Appendix B.

In Table IV we show errors and correlation coefficients
for NS-BH binaries at 2PN order when we include the BD
term. For nonspinning binaries the results are similar to
Table I in Ref. [5], except that those authors used templates
at 1.5PN order and did not take into account the factor���
3

p
=2 which appears in Eq. (2.1a). The BD term is highly

correlated with M and � (cM$ and c�$ are both quite
large). Correspondingly, the error on both M and � in-
creases by roughly 1 order of magnitude with respect to the
‘‘general relativistic’’ values listed in Table III. We also
compute the BD bound obtained by inverting only the
ry using 2PN templates, with and without the spin-orbit term. We
nsider spin terms; in the second row we also include spin-orbit
preciable effect on parameter estimation. For each binary we also
e binary parameters were known and not correlated with the BD

cM� cM$ cM� c�$ c�� c$�

0:939 0.421 � � � �0:705 � � � � � �

0:997 �0:997 0.999 0.988 �0:993 �0:999

0.845 �0:984 � � � �0:926 � � � � � �

0:996 �0:997 1.000 0.987 �0:998 �0:995

0.970 �0:998 � � � �0:955 � � � � � �

0:997 �0:997 0.999 0.988 �1:000 �0:992

0.979 �0:998 � � � �0:963 � � � � � �

0:998 �0:998 0.999 0.991 �1:000 �0:993
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diagonal element �$$ of the Fisher matrix. This ‘‘uncor-
related’’ bound !BD;unc is always about 2 orders of magni-
tude larger than the actual value we obtain by inverting the
full Fisher matrix in the absence of spins.

Notice also that the BD bound decreases with increasing
black hole mass. This can be partially understood by the
following argument: the derivative of the GW signal with
respect to $ is proportional to M�1

NSM
�4=3
BH [see Eq. (2.13d)

and use MBH 
 MNS]. Therefore the derivative decreases
as MBH increases; the integration over the frequency range
(which also depends on mass) modifies this dependence
somewhat, but the final conclusion is that the higher the
BH mass, the lower the Brans-Dicke bound.

From Table IV we also see that nonprecessional spin
effects reduce considerably the bound on the Brans-Dicke
parameter. For example, for a �1:4	 1000�M� binary the
bound decreases by a factor 10 (from �2� 105 to �2�
104) when we include the spin-orbit term. We will see later
TABLE V. Errors and correlation coefficients for various high-ma
without spin-orbit and spin-spin terms. We set DL � 3 Gpc and
practically negligible in all cases.

�tc ��c �M=M ��=� �� ��
(s) (%) (%)

�107 	 107�M�, SNR � 2063
5.27 0.0108 0.00 189 0.0401 � � � � � �

7.26 0.0717 0.0224 5.56 0.315 � � �

79.6 1.12 0.0703 25.4 1.29 0.438

�107 	 106�M�, SNR � 1204
5.11 0.0187 0.00 104 0.0267 � � � � � �

9.50 0.0589 0.0132 1.86 0.0891 � � �

83.4 2.18 0.0499 10.8 0.402 0.340

�106 	 106�M�, SNR � 2143
0.307 0.00 551 0.000 369 0.0157 � � � � � �

0.496 0.00 819 0.00 303 1.02 0.0566 � � �

3.02 0.317 0.00 872 4.60 0.213 0.140

�106 	 105�M�, SNR � 2378
0.214 0.00 734 0.000 202 0.00 976 � � � � � �

0.380 0.00 773 0.00 188 0.352 0.0162 � � �

2.46 0.521 0.00 587 1.79 0.0560 0.0858

�105 	 105�M�, SNR � 1710
0.0521 0.00 539 0.000 114 0.0113 � � � � � �

0.0746 0.00 614 0.000 766 0.366 0.0196 � � �

0.300 0.201 0.00 210 1.70 0.0685 0.0892

�105 	 104�M�, SNR � 601
0.122 0.0165 0.000 081 0 0.0111 � � � � � �

0.190 0.0301 0.000 767 0.225 0.00 934 � � �

0.643 0.663 0.00 219 1.08 0.0213 0.101

�104 	 104�M�, SNR � 252
0.222 0.0419 0.000 082 2 0.0308 � � � � � �

0.327 0.103 0.000 622 0.612 0.0275 � � �

0.758 1.39 0.00 200 3.39 0.0786 0.480
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(Table VII) that a further reduction of a factor �2 comes
from inclusion of effects related to the orbital motion of
LISA. We also found that including priors, that is, assuming
that we know a priori from general relativity that the
compact objects’ spins are bounded from above (see [15]
for a discussion) has completely negligible effects when
we include spin-orbit terms.

In setting bounds on the graviton mass, we consider
massive and supermassive binary black holes with M �
104–107M�. The derivative of the GW signal with respect
to �g is inversely proportional to the chirp mass M, so for
comparable-mass binaries, the higher the total mass the
higher the graviton-mass bound. However, as seen from the
initial and ending frequencies in Table II, for MBH >
107M�, the binary sweeps through the low-frequency end
of the LISA band below 10�4 Hz, where the predicted
sensitivity of LISA is not very robust at present. The
sensitivity in this low-frequency regime depends on how
ss BH binaries in general relativity using one detector, with and
assume H0 � 72 kms�1Mpc�1. The effect of adding priors is

cM� cM� c�� cM� c�� c��

0.930 � � � � � � � � � � � � � � �

�0:996 0.996 �1:000 � � � � � � � � �

�0:994 0.997 �1:000 �0:948 0.976 �0:970

0.934 � � � � � � � � � � � � � � �

�0:996 0.997 �1:000 � � � � � � � � �

�0:995 0.999 �0:999 �0:964 0.985 �0:975

0.887 � � � � � � � � � � � � � � �

�0:991 0.993 �1:000 � � � � � � � � �

�0:991 0.996 �0:999 �0:938 0.975 �0:964

0.871 � � � � � � � � � � � � � � �

�0:991 0.994 �1:000 � � � � � � � � �

�0:991 0.999 �0:995 �0:948 0.980 �0:957

0.799 � � � � � � � � � � � � � � �

�0:985 0.989 �1:000 � � � � � � � � �

�0:987 0.995 �0:997 �0:931 0.977 �0:958

0.732 � � � � � � � � � � � � � � �

�0:989 0.994 �0:999 � � � � � � � � �

�0:988 0.995 �0:970 �0:937 0.978 �0:899

0.846 � � � � � � � � � � � � � � �

�0:984 0.991 �0:999 � � � � � � � � �

�0:990 0.998 �0:984 �0:951 0.984 �0:937
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efficiently the acceleration noise can be reduced. In Sec.
II B, we shall investigate the effect on the estimation of the
parameters and on the graviton-mass bound, if the LISA
noise curve can be trusted only down to a lower frequency
flow � 10�4 or 5� 10�5 Hz.

In Tables V and VI we list the errors and correlation
coefficients when binaries with high, comparable masses
are detected using pattern-averaged templates at 2PN or-
der. Table V shows results for pure general relativity, with
spin-orbit and spin-spin effects included. Table VI shows
results when a massive-graviton term and a spin-orbit term
are included. As in the BD case, we do not show results for
a massive graviton combined with spin-orbit and spin-spin
effects, because the inversion of the large Fisher matrix in
this case appears to be unreliable (see Appendix B).

As in the case of NS-BH binaries, adding new parame-
ters causes a degradation in the accuracy with which we
TABLE VI. Errors and correlation coefficients for various high-m
terms. We use one detector, set DL � 3 Gpc and assume H0 � 72
assuming (-M � 0:3, -. � 0:7). The effect of adding priors is pra
bound �g;unc that could be obtained (in principle) if all the binary para
term.

�tc ��c �M=M ��=� �g ��
(s) (%) (%) �1015km�

�107 	 107�M�, SNR � 2063, �g;unc=�1015km� � 880
5.27 0.0108 0.00 189 0.0401 � � � � � �

14.1 0.0448 0.0155 0.534 69.4 � � �

79.6 1.12 0.0703 49.2 22.2 3.08

�107 	 106�M�, SNR � 1204, �g;unc=�1015km� � 527
5.11 0.0187 0.00 104 0.0267 � � � � � �

13.8 0.0749 0.0104 0.352 39.5 � � �

83.4 2.18 0.0499 25.6 9.57 1.52

�106 	 106�M�, SNR � 2143, �g;unc=�1015km� � 351
0.307 0.00 551 0.000 369 0.0157 � � � � � �

0.675 0.0175 0.00 244 0.146 46.3 � � �

3.02 0.317 0.00 872 12.2 12.4 0.790

�106 	 105�M�, SNR � 2378, �g;unc=�1015km� � 215
0.214 0.00 734 0.000 202 0.00 976 � � � � � �

0.481 0.0238 0.00 161 0.0865 27.4 � � �

2.46 0.521 0.00 587 5.52 6.02 0.337

�105 	 105�M�, SNR � 1710, �g;unc=�1015km� � 139
0.0521 0.00 539 0.000 114 0.0113 � � � � � �

0.0843 0.0131 0.000 678 0.0713 23.2 � � �

0.300 0.201 0.00 210 6.58 4.92 0.436

�105 	 104�M�, SNR � 601, �g;unc=�1015km� � 77:4
0.122 0.0165 0.000 081 0 0.0111 � � � � � �

0.203 0.0458 0.000 712 0.0804 10.8 � � �

0.643 0.663 0.0 0219 5.48 1.76 0.352

�104 	 104�M�, SNR � 252, �g;unc=�1015km� � 48:5
0.222 0.0419 0.000 082 2 0.0308 � � � � � �

0.333 0.120 0.000 597 0.217 5.80 � � �

0.758 1.39 0.00 200 29.7 0.670 2.06
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can estimate parameters. All the values reported in
Tables V and VI are obtained for binaries at 3 Gpc. The
corresponding SNR for equal-mass BH-BH systems is
shown in the right panel of Fig. 2 as a function of the total
mass of the binary. For M * 106M� we observe the ap-
pearance of a relative minimum, corresponding to the
range of frequencies in which white-dwarf confusion noise
dominates over instrumental noise.

Although we only report results for the currently favored
values of the cosmological parameters, we verified that the
upper bound on the graviton wavelength depends only
weakly on the underlying cosmological model. The un-
correlated bound �g;unc obtained by inverting only the
diagonal element ��g�g of the Fisher matrix is about 1
order of magnitude larger than the result obtained by
inverting the full Fisher matrix (for !BD the difference
was about two orders of magnitude). Compared with the
ass BH binaries including the massive-graviton and spin-orbit
kms�1Mpc�1. We show the massive-graviton bound obtained

ctically negligible in all cases. For each binary we also give the
meters were known and not correlated with the massive-graviton

cM� cM�g c��g cM� c�� c�g�

0.930 � � � � � � � � � � � � � � �

�0:981 �0:993 0.997 � � � � � � � � �

�0:978 0.948 �0:994 0.975 �1:000 0.995

0.934 � � � � � � � � � � � � � � �

�0:985 �0:995 0.997 � � � � � � � � �

�0:981 0.964 �0:997 0.978 �1:000 0.998

0.887 � � � � � � � � � � � � � � �

�0:968 �0:988 0.994 � � � � � � � � �

�0:963 0.938 �0:997 0.960 �1:000 0.997

0.871 � � � � � � � � � � � � � � �

�0:973 �0:992 0.994 � � � � � � � � �

�0:966 0.948 �0:998 0.962 �1:000 0.999

0.799 � � � � � � � � � � � � � � �

�0:952 �0:986 0.987 � � � � � � � � �

�0:950 0.931 �0:998 0.947 �1:000 0.999

0.732 � � � � � � � � � � � � � � �

�0:973 �0:994 0.990 � � � � � � � � �

�0:950 0.937 �0:999 0.946 �1:000 1.000

0.846 � � � � � � � � � � � � � � �

�0:964 �0:990 0.990 � � � � � � � � �

�0:957 0.951 �1:000 0.955 �1:000 1.000
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case of scalar-tensor theories, bounds on massive graviton
theories seem to be less sensitive to correlations among
different parameters.

B. Estimates using templates without pattern-averaging

To assess the effect of pattern-averaging on parameter
estimation, and also to determine how accurately LISA can
measure source locations and luminosity distances, we
adopt the nonaveraged templates of Sec. II B, and perform
Monte Carlo simulations using a population of sources
across the sky. We consider in detail two systems: (i) a
NS-BH binary with mass of �1:4	 1000�M� observed
with a single-detector SNR #I � 10 (a typical target sys-
tem used to place bounds on the BD parameter), and (ii) a
BH-BH binary with mass of �106 	 106�M� at distance
DL � 3 Gpc (a typical system in the context of massive
graviton theories).

For each of these systems we distribute 104 sources over
sky position and orientation. We randomly generate the
angles ��S, ��L in the range �0; 2�� and 6S � cos ��S, 6L �
cos ��L in the range ��1; 1�. As in [8], to generate random
numbers we use the routine RAN2 [34]. Computing and
inverting the Fisher matrix for 104 binaries typically takes
�8–15 minutes (depending on the dimensionality of the
matrix) on an ordinary laptop. This is much faster (by a
factor �500) than previous Monte Carlo simulations [35].
A marginal difference with previous codes is that we
compute angular derivatives analytically instead of using
finite differencing, but the major improvement is due to our
use of a numerical integrator based on spectral methods,
namely, the Gauss-Legendre routine GAULEG [34].
Numerical experiments show that �600 points in the spec-
tral expansion are sufficient to obtain an accuracy of one
part in 104 in all parameter errors. This is true even when
we use splines to interpolate tabulated data from the LISA
Sensitivity Curve Generator, instead of adopting the ana-
lytical noise curve of Eq. (2.31). When the waveform
contains a large number of highly correlated parameters,
computing the inverse of the Fisher matrix can be numeri-
cally difficult. The method we used to check the robustness
of our results is described in Appendix B.

Once we have computed the errors for all 104 binaries
we group them into Nbins bins depending on the (logarith-
mic) distribution of their errors: a binary belongs to the jth
bin if the error on some parameter X satisfies�
ln�Xmin� 	

�j� 1��ln�Xmax� � ln�Xmin��
Nbins

�
< ln�X�

�

�
ln�Xmin� 	

j�ln�Xmax� � ln�Xmin��
Nbins

�
; (3.2)

for j � 1; . . . ; Nbins. In this paper we fix Nbins � 50. Once
we have binned the data, we normalize the binaries in each
bin to the total number of binaries to get a ‘‘probability
distribution’’ of the error on the variable X.
084025
In Figs. 3 and 4 we show the resulting histograms for a
NS-BH binary of �1:4	 103�M� with #I � 10. The plots
contain various histograms for parameter estimations made
when spins are absent, when spin-orbit is included, and
when both spin-orbit and spin-spin are included. The histo-
grams come in pairs: in each case the solid-line histogram
refers to measurements carried out with only one data
stream from the Michelson interferometer I, the dashed
histogram refers to measurements made when both data
streams from Michelson interferometers I and II are com-
bined. Not surprisingly, the accuracy is improved with the
use of two outputs, very roughly by a factor of order

���
2

p
in

most cases.
In Fig. 3 we plot the probability distribution for the

luminosity distance �DL=DL and for the angular resolu-
tion �-S, defined as

�-S � 2�j sin ��Sjf ��S ��S ��S
��S
� 2��S ��S

g1=2: (3.3)

In Fig. 4 we plot the distributions for the chirp mass
�M=M, the reduced mass �6=6, the spin parameters
�� and��, and the bound on the BD parameter !BD. The
distribution for �6=6 can be obtained from the errors on
� and M by error propagation, taking into account that the
correlation between the two mass parameters, as defined in
Eq. (2.11), can be large:

�6
6

�

��
�M

M

�
2
	

�
2

5

��
�

�
2
	
4

5

�
�M

M

��
��
�

�
cM�

�
1=2
:

(3.4)

The plots contain histograms evaluated when spins are
absent, when spin-orbit alone is considered and when
both spin-orbit and spin-spin are included. We complement
these plots by Table VII, which shows the average errors
obtained summing over all binaries, both with and without
the BD term. Notice that this procedure is different from
averaging over the sky without taking into account the
orbital motion of LISA. For each model, the first line in
Table VII refers to errors obtained averaging over all
binaries and using only detector I, the second line refers
to an average over all binaries using both detectors, while
the third line reproduces, for comparison, the correspond-
ing pattern-averaged results from Tables III and IV. In
general, the pattern-averaged procedure gives good quali-
tative, albeit systematically low estimates of the measure-
ment errors, compared to the Monte Carlo results. For
stellar-mass inspirals into intermediate-mass black holes,
both the angular resolution and the distance determination
accuracy are poor. The Monte Carlo simulation gives
rather broad probability distributions, shown in Fig. 3,
with minimum error in distance around 0.1, but with a
tail extending up to �DL=DL � 10 or so. The values for
�-S in steradians look rather small, but when expressed
in arcminutes, with 9�S � ��-S � �3283=str��1=2 �
60 arcmin, they are substantial. For comparison, the angu-
lar diameter of the Moon (and the Sun) as seen from the
-13
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FIG. 3 (color online). Monte Carlo simulation of 104 binaries with observed total mass �1:4	 103�M� in general relativity, with
single-detector SNR � 10, -. � 0:7, -M � 0:3. Top: Probability distributions of the angular resolution �-S in steradians for one
detector (left) and two detectors (right). In each figure, from left to right, the histograms refer to no spins, SO included, and SO and SS
included. Bottom: Probability distributions of �DL=DL for one detector (solid line) and two detectors (dashed line); �DL=DL is
essentially unaffected by the inclusion of spins, so we only show histograms without the spin terms.
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Earth is ’ 30 arcmins. The angular resolution is degraded
when spin terms are included, as is apparent in the top
panels of Fig. 3, while the distance determination is rela-
tively insensitive to the inclusion of spin terms. As first
noticed by Cutler [7], both the angular distribution and the
distance determination improve when we use both detec-
tors (dashed lines) instead of a single detector (solid lines).

A noteworthy feature of the histograms in Fig. 4 is that
the errors on M, 6, �, � and !BD show a peculiar
‘‘double-peak’’ structure which is absent for the high-
mass BH-BH binaries. We see this double-peak structure
for the first time because our fast spectral integrator allows
us to simulate a sufficiently high number of binaries, but
we have no analytical understanding of this behavior. The
inclusion of each spin-coupling term degrades the deter-
mination of both M and 6 by roughly 1 order of magni-
tude. The large reduction on the Brans-Dicke bound caused
by the inclusion of nonprecessing spins is one of the main
results of this work (bottom panel of Fig. 4).

In Figs. 5 and 6 we show similar histograms for a binary
of total observed mass �106 	 106�M� at a fixed distance of
3 Gpc, and in Table VIII we display average errors ob-
084025
tained by summing over all binaries. Supermassive BH-BH
binaries can be observed at much higher redshifts than NS-
BH binaries. LISA’s accuracy in measuring the luminosity
distance DL can thus be exploited to infer the redshift z of
the source, disentangling the mass-redshift degeneracy of
the waveforms and allowing the determination of the
masses in the source rest frame. Indeed, Hughes proposed
to use gravitational-wave observations in this way to map
the merger history of supermassive black holes [8]. Once
we have�DL=DL we can compute the error on the binary’s
redshift by the following procedure. If we assume that the
cosmological parameters -. and H0 are known with an
accuracy ’ 10%, we can use error propagation to get �z
from �DL following Hughes [8]:

�z �
�
@DL

@z

�
�1
�
�D2L 	

�
@DL

@-.

�
2
�-2

.

	

�
@DL

@H0

�
2
�H20

�
1=2
: (3.5)

From Eq. (2.16), and assuming that -M 	-. � 1, we
find the derivatives
-14
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FIG. 4 (color online). Monte Carlo simulation of 104 binaries with observed total mass �1:4	 103�M� in general relativity, with
single-detector SNR � 10, -. � 0:7, -M � 0:3. Top four panels: Probability distribution of the errors on the chirp mass �M=M,
the reduced mass �6=6, the SO parameter �� and the SS parameter ��. Bottom panel: Bound on !BD when a Brans-Dicke term is
included. Solid (dashed) lines refer to one (two) detector(s).
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@DL
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1	 z
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��������������������������������������������������
�1�-.��1	 z�3 	-.

p ; (3.6a)

@DL

@H0
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H0
; (3.6b)

@DL

@-.
�
1	 z
2H0

Z z

0

��1	 z0�3 � 1�dz0

��1�-.��1	 z0�3 	-.�
3=2
: (3.6c)
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Then Eq. (3.5) can be recast in the form

�z �
�
@DL

@z

�
�1

���������������������������������������������������������������������������
�D2L
D2L

	
�H20
H20

�
D2L 	�-

2
.

�
@DL

@-.

�
2

s
:

(3.7)

Thus�z is completely determined once we fix z,�DL=DL,
�H0=H0, -., �-.. We also compute the best possible
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TABLE VII. Average errors for a Monte Carlo simulation of 104 NS-BH binaries randomly located and oriented on the sky with
mass of �1:4	 1000�M�. We first consider general relativistic waveforms (GR) and add spin-orbit (SO) and spin-spin (SS) couplings,
fixing the single-detector SNR #I � 10. Then we do the same including also a Brans-Dicke (BD) term. In each case, the first line refers
to the errors obtained using only the first detector; the second line gives the errors obtained using both detectors; the third line gives
pattern-averaged results from the relevant entries of Tables III and IV.

Case �DL=DL �M=M ��=� �-S 9�S !BD �� ��
(%) (%) (10�5 str) (arcmin)

GR 0.782 0.000 063 3 0.103 15.3 42.5 � � � � � � � � �

0.376 0.000 037 8 0.0617 5.95 26.5 � � � � � � � � �

� � � 0.000 034 1 0.0439 � � � � � � � � � � � � � � �

GR	 SO 0.797 0.00 178 0.816 35.3 64.6 � � � 0.0179 � � �

0.374 0.00 111 0.507 13.8 40.4 � � � 0.0111 � � �

� � � 0.000 584 0.297 � � � � � � � � � 0.00 560 � � �

GR	 SO	 SS 0.900 0.00 869 6.96 60.2 84.3 � � � 0.143 1.82
0.420 0.00 562 4.51 23.9 53.1 � � � 0.0930 1.18
� � � 0.00 296 2.65 � � � � � � � � � 0.0705 0.793

BD 0.764 0.000 789 0.283 40.8 69.4 62 561 � � �

0.359 0.000 488 0.174 15.8 43.2 96 719 � � �

� � � 0.000 189 0.116 � � � � � � 211 389 � � �

BD	 SO 0.898 0.0225 4.87 86.8 101.3 7209 0.157
0.413 0.0143 3.10 34.1 63.5 10 799 0.100
� � � 0.00 764 1.86 � � � � � � 21 257 0.0557
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redshift determination ��z�best that LISA could achieve
assuming (perhaps not too optimistically) that by the
time LISA flies the cosmological parameters are known
to much better precision than LISA’s distance determina-
tions (�-. � 0;�H0 � 0 in Eq. (3.5)).

Figure 5 shows the resulting probability distributions for
the SNR, the luminosity distance �DL=DL, the redshift
determinations �z=z and ��z=z�best, and the angular reso-
lution �-S in steradians. Unlike the NS-BH systems
considered in Fig. 3, the probability distribution of all these
quantities (at fixed distance) depends very weakly on
whether we include or omit spins, so we display only the
spinless results. The SNR distribution has the same shape
and average value for the two Michelson detectors; it
increases (on average) by a factor ’

���
2

p
when we use

both detectors. Not surprisingly, the distribution of
��z=z�best and �DL=DL are identical, apart from the scale
factor from @DL=@z in Eq. (3.6a). The shape of the distri-
bution of �DL=DL is different from that shown in
Fig. 3. The distribution of �z=z is dominated by the 10
percent errors assumed for the cosmological parameters,
and shows only small effects of the distribution of
�DL=DL. At this relatively small redshift, the present
uncertainty on cosmological parameters dominates over
the accuracy of LISA [8]. For larger values of the redshift
LISA distance and redshift measurements become less
accurate, eventually dominating the error at some
critical value of z that depends on the MBH masses (see
Sec. III C).
084025
Figure 6 shows distributions for the chirp mass
�M=M, the reduced mass �6=6, the spin
parameters, �� and ��, in general relativity, and finally
the bound on the graviton Compton wavelength when that
term is included. The corresponding errors are listed in
Table VIII. It turns out in this case that the ‘‘pattern-
averaged’’ approach of Sec. II A provides very good esti-
mates of the errors on the parameters M, �, �g, � and �
(in fact, these estimates are almost identical to those ob-
tained from the Monte Carlo simulations using both de-
tectors, as can be seen by comparing the relevant values in
Tables V and VI with Table VIII). Quite remarkably, the
errors on DL, M,-S and z in the case GR	 SO	 SS are
exactly the same as the corresponding errors for the case
MG	 SO, while the errors on � and � differ (a similar
consideration applies to the angle-average calculation of
Sec. III A).

The determination of M and 6 is affected by the use of
one or two detectors and by the inclusion of the spin
couplings in the same way. Notice however that �6=6 is
always about 2 orders of magnitude larger than �M=M.
The determination of the spin-spin parameter � without
large errors is only made possible by the use of two
detectors.

When we consider alternative theories of gravity (either
with a BD or a massive-graviton term) we do not include
spin-spin effects because the Fisher matrix becomes
ill-conditioned and noninvertible (see Appendix B).
The noninvertibility of the Fisher matrix in the case
-16
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FIG. 5 (color online). Monte Carlo simulation of 104 binaries with total mass �106 	 106�M� in general relativity, withDL � 3 Gpc,
-. � 0:7,-M � 0:3, with no spins. Panels show probability distributions of the SNR, the distance determination error �DL=DL, the
redshift errors �z=z and ��z=z�best and the angular resolution �-S in steradians. Solid (dashed) lines refer to one (two) detector(s).
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MG	 SO	 SS is probably related to the ‘‘degeneracy’’
of the errors in the cases GR	 SO	 SS and MG	 SO.

C. Redshift dependence of parameter estimation

Inspiralling MBH can be observed by LISA out to enor-
mous distances. If their masses and luminosity distances
are determined with sufficient accuracy, LISA can be a
source of information on the growth of structures at high
084025
redshift. In this context the redshift z can be large, and the
distinction between observed masses and masses as mea-
sured in the source rest frame—given by the simple re-
scaling (2.4)— is important. LISA can only measure red-
shifted combinations of the intrinsic source parameters
(masses and spins), so it cannot measure the redshift z. If
cosmological parameters are known, Eq. (2.16) can be
inverted to yield z as a function of DL [8], and LISA
-17
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FIG. 6 (color online). Monte Carlo simulation of 104 binaries with observed total mass �106 	 106�M� in general relativity, with
DL � 3 Gpc, -. � 0:7, -M � 0:3. Top four panels: Probability distributions of the error on the chirp mass �M=M, the reduced
mass �6=6, the SO parameter ��, the SS parameter ��. Bottom panel: Bound on the graviton Compton wavelength �g (in km),
when a massive-graviton term is included. Solid (dashed) lines refer to one (two) detector(s).
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measurements of the luminosity distance can be used to
obtain black hole masses as a function of redshift, thus
constraining hierarchical merger scenarios. Alternatively:
if we can obtain the binary’s redshift by some other means,
e.g., from an electromagnetic counterpart, then LISA mea-
surements of DL can be used to improve our knowledge of
the cosmological parameters [36–38].
084025
These exciting applications depend, of course, on LISA’s
measurement accuracy at large redshifts. In the following
we look at the redshift dependence of measurement errors
for two representative MBH binaries having masses �106 	
106�M� and �107 	 107�M� as measured in the source rest
frame. (This choice is at variance with the rest of the paper,
where we fix instead the values of the measured masses at
-18



TABLE VIII. Average SNRs and errors for a Monte Carlo simulation of 104 BH-BH binaries randomly located and oriented in the
sky with mass �106 	 106�M�. We fix DL � 3 Gpc and, where indicated, include a massive-graviton (MG) term, spin-orbit (SO) and
spin-spin (SS) couplings. We also illustrate the deterioration in parameter estimation when we assume that LISA is blind below some
cutoff frequency flow. The default value for flow is 10�5 Hz. In each case, the first (second) line refers to the errors of a �106 	 106�M�

binary using one (two) detectors. We assume a cosmological model with -M � 0:3 and -. � 0:7.

Case SNR �DL=DL �M=M ��=� �-S ��z=z� ��z=z�best �g �� ��
(%) (%) (10�5 str) (1015 km)

GR 1861 0.0458 0.000 614 0.0304 59.9 0.101 0.0380 � � � � � � � � �

2693 0.0106 0.000 349 0.0155 9.76 0.0873 0.00 880 � � � � � � � � �

GR	 cutoff 1823 0.341 0.00 966 0.109 5894 0.306 0.283 � � � � � � � � �

flow � 10�4 Hz 2640 0.0164 0.00 121 0.0289 48.9 0.0881 0.0136 � � � � � � � � �

GR	 SO 1863 0.0492 0.00 558 1.93 64.4 0.103 0.0408 � � � 0.107 � � �

2696 0.0107 0.00 295 1.01 10.2 0.0873 0.00 891 � � � 0.0558 � � �

GR	 SO	 SS 1862 0.0504 0.0152 8.05 67.1 0.104 0.0418 � � � 0.374 0.248
2695 0.0109 0.00 852 4.52 10.4 0.0873 0.00 902 � � � 0.209 0.139

MG 1861 0.0486 0.00 447 0.273 64.1 0.103 0.0403 37.4 � � � � � �

2693 0.0107 0.00 237 0.145 10.2 0.0873 0.00 889 49.5 � � � � � �

MG	 cutoff 1787 0.442 0.0443 1.18 13290 0.386 0.367 16.2 � � � � � �

flow � 10�4 Hz 2592 0.0159 0.00 921 0.362 51.2 0.0878 0.0132 29.5 � � � � � �

MG	 cutoff 1859 0.0511 0.00 522 0.301 71.8 0.104 0.0424 35.4 � � � � � �

flow � 5� 10�5 Hz 2691 0.0108 0.00 274 0.158 10.6 0.0873 0.00 895 46.7 � � � � � �

MG	 SO 1861 0.0495 0.0152 21.5 67.2 0.103 0.0411 10.6 1.39 � � �

2693 0.0108 0.00 852 12.1 10.4 0.0873 0.00 896 13.3 0.780 � � �
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the detector.) We consider a zero-curvature–universe with
(-M � 0:3, -. � 0:7) and H0 � 72 km s�1Mpc�1, ac-
cording to the present observational estimates. We also
assume that the LISA noise can be extrapolated down to
flow � 10�5 Hz; more conservative assumptions on flow
could significantly affect our conclusions (see [18,19] and
Sec. III D). We compute the errors, as in Sec. III B, per-
forming Monte Carlo simulations of 104 binaries for differ-
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ent values of the redshift and then averaging over all
binaries.

Figure 7 shows the redshift dependence of the average
errors on various quantities (all errors are computed using
two detectors). The left panel corresponds to the general
relativistic inspiral of a nonspinning binary. In the right
panel we include, in addition, SO and SS terms. Solid
(dashed) lines refer to MBH binaries having mass
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�106 	 106�M� [�107 	 107�M�, respectively] as mea-
sured in the source rest frame.

As expected from the discussion in Sec. III B, distance
determination and angular resolution are essentially inde-
pendent of the inclusion of spin terms. The relative error on
DL for the lower-mass binary system is �2% at z � 1,
�5% at z � 2 and �11% at z � 4. This reduction in
accuracy is due to the fact that the signal spends less and
less time in band as the redshift is increased. We only
consider values of the redshift such that the binary spends
at least one month in band before coalescing: for the case
�107 	 107�M�, this corresponds to z� 4. The distance
determination error for this high-mass binary grows quite
rapidly, being �2% at z � 1, �6% at z � 2 and �21% at
z � 4. LISA’s angular resolution is rather poor even at
small redshifts, and it rapidly degrades for sources located
farther away, the degradation being more pronounced for
higher-mass binaries. Better distance determinations can
be obtained if we are lucky enough to locate the source in
the sky by some other means: for example, associating the
gravitational-wave event with an electromagnetic counter-
part. In this case angles and distance would be decorre-
lated, allowing order of magnitude improvements in the
determination of DL [18]. We should also recall that in our
discussion we are quoting average errors. Since the loga-
rithmic distribution of �DL=DL has a rather long tail at
large values of the error (Fig. 5), distance errors in a
specific detection could actually be much smaller than
the average.

Unimportant as they are for distance determination and
angular resolution, spin effects have a dramatic impact on
mass measurement accuracy. For our low-mass system, in
the absence of spins the chirp mass can be measured with
fantastic accuracy up to z � 10, the largest error being
�0:06%. Even including SO and SS effects and ignoring
precession, the error on M is only �2:5% at z � 10.
Errors are predictably larger for the �107 	 107�M� binary.
When we omit spin effects M can still be measured with
an accuracy better than a percent out to z � 4, but when we
include SO and SS terms the error at z � 2 is already �6%.
Our ability to measure the mass of both black holes is
severely limited by the error on the reduced mass6, which
is always about 2 orders of magnitude larger than the error
on M. Errors on 6 for nonspinning binaries of �106 	
106�M� are remarkably small if we ignore spin effects: at
z � 10 the error is only 0.6%. Including both SO and SS
terms things get much worse, and even at z � 1 the re-
duced mass error is �6%.

For �106 	 106�M� general relativistic nonspinning bi-
naries, a least-square fit of mass and distance errors in the
interval z 2 �1; 10� yields:

�M=M� ��1:1476	 7:2356z	 5:7376z2�� 10�6;

�6=6� ��0:61431	 1:9018z	 0:43721z2�� 10�4;

�DL=DL � ��0:65651	 2:6935z	 0:061595z2�� 10�2:
084025
It is important to remark here that in our study we are
ignoring precessional effects. These effects induce modu-
lations in the waveform, possibly improving the mass
measurements in a significant way [10]. The study of
precession is therefore crucial to assess LISA’s ability to
measure MBH masses in galactic mergers. Such a study is
beyond the scope of this paper.

D. Effect of LISA’s low frequency sensitivity on
parameter estimation

High-mass binaries sweep through the low-frequency
region of the LISA band, where the LISA sensitivity will
ultimately depend on design choices for the acceleration
noise. To explore the possible consequences of such design
choices, we studied the effects on the accuracy of parame-
ter estimation if LISA were completely blind below some
cutoff frequency flow. In all our analyses to this point, we
chose the default value for flow to be 10�5 Hz, but we now
consider higher cutoff frequencies 5� 10�5 Hz and
10�4 Hz:

Table VIII shows that if flow � 5� 10�5 Hz , parameter
estimation for binaries of �106 	 106�M� is essentially
unaffected. But if flow � 10�4 Hz, the accuracies of esti-
mating all quantities are degraded by factors between two
and six, both for GR and for massive graviton theories.

Since binaries of larger mass sweep through a lower
frequency band, we expect the degradation to be even
worse for such binaries. To be more quantitative, we ana-
lyzed what happens when we increase the LISA cutoff
frequency flow from 10�5 Hz to 10�4 Hz for massive
black-hole binaries having total mass larger than
�105M�. Similar preliminary investigations of the effect
of low-frequency LISA noise on the distance determination
of massive black holes can be found in [18]. In this sub-
section we consider for concreteness nonspinning, equal-
mass binaries. All quoted values for the average errors have
been obtained using Monte Carlo simulations with two
detectors.

The results are summarized in Fig. 8, where we show
errors computed both in general relativity (left panel) and
in massive graviton theories (right panel). In the plots we
display results for cutoff frequencies flow � 10�5 Hz and
flow � 10�4 Hz.

Consider first the distance determination accuracy
�DL=DL one could achieve. For general relativistic bi-
naries, as we move the low-frequency cutoff flow,
�DL=DL grows from 1.1% to 1.8% for a binary of �106 	
106�M�. If we double the mass of each black hole, the
corresponding increase is roughly twice as large—from
1.0% to 2.6%. For larger values of the mass and flow �
10�4 Hz the binary does not spend much time in band, and
the inversion of the Fisher matrix becomes problematic
(see Appendix B). The angular resolution is even more
sensitive to the low-frequency cutoff. As the cutoff flow
goes from 10�5 Hz to 10�4 Hz, �-S (in steradians) goes
-20
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FIG. 8 (color online). Errors on different parameters as a function of the total binary mass M (in solar masses) for equal-mass
nonspinning BH-BH binaries. We fix DL � 3 Gpc, -. � 0:7, -M � 0:3. Errors are obtained by averaging results of Monte Carlo
simulations of 104 binaries and using two detectors. Left: General relativity (GR); right: massive graviton theories (MG). Solid lines
assume that the LISA noise can be extrapolated down to flow � 10�5 Hz; dashed lines assume flow � 10�4 Hz. Circles refer to chirp
mass M, squares to reduced mass 6, triangles to angular resolution -S in steradians, diamonds to luminosity distance DL.

ESTIMATING SPINNING BINARY PARAMETERS AND . . . PHYSICAL REVIEW D 71, 084025 (2005)
from 9:7� 10�5 to 4:8� 10�4 for a binary of �106 	
106�M�. If we double the mass of each black hole �-S
correspondingly goes from 8:4� 10�5 to 1:8� 10�3, in-
creasing by a factor �102. We note another interesting
feature emerging from Fig. 8. If present design choices
allow LISA to be sensitive down to flow � 10�5 Hz, the
distance error and angular resolution (at least for DL �
3 Gpc) will be decreasing functions of M in the super-
massive black-hole mass range M 2 �106 � 107�M�. This
feature could be used to study the merger history of black
holes at galactic centers, and to map structure formation in
the early universe.

Mass determinations are also strongly affected by low-
frequency sensitivity, as observed in Refs. [18,19]. For a
�106 	 106�M� binary in general relativity, a lower cutoff
at flow � 10�4 Hz increases the error on the chirp mass by
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FIG. 9 (color online). Bound on the graviton Compton wave-
length as a function of the total binary mass M (in solar masses)
for nonspinning equal-mass BH-BH binaries. We fix DL �
3 Gpc, -. � 0:7, -M � 0:3 and use both detectors. The solid
line assumes that the LISA noise can be extrapolated down to
flow � 10�5 Hz; the dashed line assumes flow � 10�4 Hz.
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a factor 3 for a �106 	 106�M� binary, while the error in 6
correspondingly increases from 0.0066% to 0.012%. An
error of the order of a percent on mass determination
during coalescence could be a problem for the identifica-
tion of ‘‘golden binaries’’ (binaries for which we can
measure the total mass-energy lost to GWs [11]) with
LISA. If in addition to a cutoff at flow � 10�4 Hz we
also include a massive-graviton term, the errors for binaries
of total mass 107M� become unacceptably large: �0:6%
for the chirp mass and �4% for the reduced mass.

Next we consider how the low-frequency cutoff affects
bounds on the graviton mass. The results are shown in
Fig. 9. It turns out that the bound on the graviton
Compton wavelength is affected by low-frequency noise
in the same way as the accuracy in distance and redshift
determination . As we increase flow from 10�5 Hz to
10�4 Hz, the bound on �g (in units of 1015 km) drops
from 49.4 to 29.5 for a binary of �106 	 106�M�. For an
equal-mass BH-BH binary of total mass 107M� the corre-
sponding reduction is from 67.9 to 10.3. Notice also that
when we pick flow � 10�4 Hz the bound on �g has a
maximum for equal-mass binaries of total mass
�106M�. Being sensitive below 10�4 Hz is therefore im-
portant to put bounds on the graviton mass through obser-
vations of binaries more massive than this.

In conclusion, design choices for the LISA low-
frequency acceleration noise will have a dramatic impact
on our ability to (i) locate massive black-hole binaries in
the sky, (ii) measure their masses, (iii) use them as standard
cosmological candles, and (iv) bound the mass of the
graviton.

IV. CONCLUSIONS

In this paper we analyzed how the inclusion of spin
couplings affects parameter estimation in observations of
binary coalescence, and the bounds that can be placed on
-21
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alternative theories of gravity, such as the Brans-Dicke and
massive graviton theories. Extending previous investiga-
tions [2–5], we also took into account the dependence on
the four angles describing the source location and the
direction of the (orbital) angular momentum, performing
large-scale Monte Carlo simulation of 104 binaries.

We found that the bound on the Brans-Dicke parameter
(and therefore also the bound on parameters describing
more general scalar-tensor theories, such as those consid-
ered in Ref. [6]) is significantly reduced by spin-orbit and
spin-spin couplings, while the bound on the graviton
Compton wavelength is only marginally reduced. As ex-
pected, we found that the inclusion of the four orientation
angles does not alter the estimation of the binary masses
and spins. The reason is that the orientation angles are
rather uncorrelated with those parameters, appearing only
in the GW amplitude and not in the phase. For the same
reason, we found that spin-orbit and spin-spin couplings
have little effect on the angular resolution, distance deter-
mination and hence on the redshift determination for mas-
sive black-hole binaries. For NS-IMBH binaries, these
extrinsic parameters are determined rather poorly with or
without spin effects. For massive black-hole binaries,
Monte Carlo simulations show that LISA can provide rea-
sonably accurate distance determinations out to z� 2� 4
for black hole masses & 107M�.

The cosmological reach of LISA will ultimately depend
on design choices for the acceleration noise. The reason is
that for massive binaries the GW signal sweeps through the
low-frequency LISA band. By default we made a rather
optimistic assumption that the LISA noise curve can be
extrapolated down to a lower frequency of 10�5 Hz. We
then carried out an explorative survey to see how a higher
(more conservative) low-frequency cutoff affects the deter-
mination of the binary parameters for high-mass configu-
rations. We found that the cutoff will have a dramatic
impact on our ability to (i) locate black-hole binaries of
mass * 106M� in the sky, (ii) measure their masses,
(iii) use them as standard cosmological candles, and iv)
bound the mass of the graviton. Our results are compatible
with similar investigations which have appeared in the
literature [18,19].

Our analysis was limited to nonprecessing binaries.
Vecchio [10] has shown that for comparable high-mass
BHs [e.g., �106 	 106�M�] modulational effects can de-
correlate some of the binary parameters, allowing a better
estimation of masses and distances with respect to the case
when spins are aligned or antialigned with the (orbital)
angular momentum. At this stage it is not clear if modula-
tional effects can improve the accuracy in estimating bi-
nary parameters also for small mass-ratio binaries (e.g., a
NS and an IMBH), and allow one to put more stringent
bounds on alternative theories of gravity. Only a direct
calculation can clarify this point, and we plan to tackle it
in the near future.
084025
When describing stellar mass objects inspiralling into
intermediate-mass black holes, we only considered circular
orbits. This assumption is barely justified, especially for
high mass ratios. In the future we plan to investigate how
the results change when eccentricity is included.

Finally, in this paper we have focused on statistical
errors, implicitly assuming that the waveform is known
with high enough accuracy to disregard systematic errors.
However, massive binaries are likely to be detected with
rather high SNR, on the order of 100. If this is the case, it
might well be that spinning waveforms at 2PN order are
not sufficiently accurate to permit one to neglect system-
atic over statistical errors.
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APPENDIX A: ESSENTIAL FORMULAS FOR THE
LISA RESPONSE TO NONPRECESSING SPINNING

BINARIES

In this Appendix we write down the essential formulae
of Ref. [7] which we use in Sec. II B. (We refer the reader
to Ref. [7] for further details and notation.)

Unbarred quantities refer to the rotating LISA-based
coordinate system, while barred quantities refer to the fixed
solar-system-based coordinate system. Assuming as in
Ref. [7] that the noise is symmetric in each pair of LISA
arms, we can reduce LISA to two independent Michelson
interferometers with equilateral triangle shape. In this
approximation the LISA beam-pattern functions for the
two Michelson outputs are the same as for a single detec-
tor, except for the factor

���
3

p
=2 which already appears in

Eq. (2.23), and are given by

F	
I ��S;�S;  S� �

1

2
�1	 cos2�S� cos2�S cos2 S

� cos�S sin2�S sin2 S;

F�
I ��S;�S;  S� �

1

2
�1	 cos2�S� cos2�S sin2 S

	 cos�S sin2�S cos2 S;

(A1)

and

F	
II ��S;�S;  S� � F	

I ��S;�S �
�
4
;  S�;

F�
II ��S;�S;  S� � F	

I ��S;�S �
�
4
;  S�:

(A2)

In the above equations we have denoted by ��S;�S� the
source location and by  S the polarization angle defined as
-22
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tan S�t� �
L̂ � z� �L̂ � n��z � n�

n � �L̂� z�
; (A3)

L̂, z and �n being the unit vectors along the orbital
angular momentum, the unit normal to LISA’s plane and
the GW direction of propagation, respectively.

The waveform polarization and Doppler phases entering
the GW signal (2.23) are (	 � I; II):

’p;	�t� � tan�1
�

2�L̂ � n�F�
	 �t�

�1	 �L̂ � n�2�F	
	 �t�

�
; (A4a)

’D�t� �
2�f
c
R sin ��S cos� ���t� � ��S�; (A4b)

with R � 1 AU and ���t� � ��0 	 2�t=T. Here T � 1 year
is the orbital period of LISA, and ��0 is a constant that
specifies the detector’s location at time t � 0. In this paper
we always assume that there is no precession, so L̂a points
in a fixed direction � ��L; ��L�.

To express the angles ��S;�S;  S� evaluated with respect
to the rotating detector-based coordinate system as func-
tion of the angles � ��S; ��S; ��L; ��L� evaluated with respect to
the fixed solar-system based coordinate system, we use the
following relations [7]:

cos�S�t� �
1

2
cos ��S �

���
3

p

2
sin ��S cos� ���t� � ��S�; (A5a)

�S�t� � 	0 	
2�t
T

	 tan�1
� ���
3

p
cos ��S 	 sin ��S cos� ���t� � ��S�

2 sin ��S sin� ���t� � ��S�

�
;

(A5b)

where 	0 is a constant specifying the orientation of the
arms at t � 0. Following Cutler [7], we take 	0 � 0 and
��0 � 0, corresponding to a specific choice of the initial

position and orientation of the detector. In addition,

z � n � cos�S; (A6a)

L̂ � z �
1

2
cos ��L �

���
3

p

2
sin ��L cos� ���t� � ��L�;

(A6b)

L̂ � n � cos ��L cos ��S 	 sin ��L sin ��S cos� ��L � ��S�;

(A6c)

n � �L̂� z� �
1

2
sin ��L sin ��S sin� ��L � ��S�

�

���
3

p

2
cos ���t��cos ��L sin ��S sin ��S

� cos ��S sin ��L sin ��L�

�

���
3

p

2
sin ���t��cos ��S sin ��L cos ��L

� cos ��L sin ��S cos ��S�: (A6d)
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APPENDIX B: SUBTLETIES IN THE INVERSION
OF THE FISHER MATRIX

In the paper we evaluate the Fisher matrix using both a
MATHEMATICA and a FORTRAN code. In the FORTRAN code
we normally perform the numerical inversion of the Fisher
matrix using the LU decomposition, which expresses the
Fisher matrix as the product of a Lower-triangular and an
Upper-triangular matrix (cf. Sec. 2.3 of [34]). To check the
result we simply multiply the inverse by the original ma-
trix. In this way we obtain a numerical ‘‘identity matrix’’
whose elements Inumij will be slightly different from the
Kronecker symbol 9ij. We can measure this deviation from
the ‘‘true’’ identity matrix defining a small quantity

:inv � maxi;jjInumij � 9ijj: (B1)

We found that extreme mass-ratio inspirals are more likely
to yield an ill-conditioned Fisher matrix. Therefore, as a
rule of thumb, we consider the inversion successful if the
parameter :inv < 10�3 (for NS-BH binaries) and if :inv <
10�4 (for massive BH-BH binaries). In Mathematica we
perform a similar check using the built-in matrix inversion
routine.

Matrix inversion generally becomes more difficult as the
number of elements of the Fisher matrix increases. In
particular, the LU decomposition and the Mathematica
inversion routine fail when we consider alternative theories
of gravity including both spin-orbit and spin-spin terms. To
understand the reason for this failure we can use a principal
component analysis [39], also known as singular-value
decomposition (see eg. Sec. 2.6 of [34]). We decompose
the Fisher matrix F as

F � UWVT; (B2)

U and V being orthogonal matrices, and VT being the
transpose of V. The matrix W is diagonal with positive
or zero elements wj (the singular values). The inverse of F
is then given by

F � VW�1UT; (B3)

where W�1 is a diagonal matrix whose elements are the
reciprocals 1=wj of the singular values. Numerically
speaking, a matrix is not invertible when the reciprocal
of its condition number (defined as the ratio of the largest
singular value to the smallest singular value) approaches
the machine’s floating-point precision. When we consider
alternative theories including both spin-orbit and spin-spin
terms, the matrix becomes noninvertible in this sense: our
numerical experiments show that one of the singular values
approaches zero. In principle, even in this case we can still
obtain a ‘‘pseudoinverse’’: the matrix which is closest to
the ‘‘real’’ inverse in a least-square sense [34]. To do this it
suffices to replace 1=wj by zero whenever wj is zero in
Eq. (B3). However, in this paper we decided not to quote
results obtained in this way. We estimate the binary pa-
-23



BERTI, BUONANNO, AND WILL PHYSICAL REVIEW D 71, 084025 (2005)
rameters only when spin-orbit and spin-spin terms
(Tables III and V), Brans-Dicke and spin-orbit terms
084025
(Table IV) or massive graviton and spin-orbit terms
(Table VI) are included.
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Iyer, Phys. Rev. Lett. 93, 091101 (2004).
[25] L. Blanchet, T. Damour, B. R. Iyer, C. M. Will, and A. G.

Wiseman, Phys. Rev. Lett. 74, 3515 (1995).
[26] D. N. Spergel et al., Astrophys. J. Suppl. Ser. 148, 175

(2003).
[27] S. Finn and K. S. Thorne, Phys. Rev. D 62, 124021 (2000).
[28] S. L. Larson, W. A. Hiscock, and R. W. Hellings, Phys.

Rev. D 62, 062001 (2000).
[29] G. Nelemans, L. R. Yungelson, and S. F. Portegies Zwart,

Astron. Astrophys. 375, 890 (2001).
[30] A. J. Farmer and E. S. Phinney, Mon. Not. R. Astron. Soc.

346, 1197 (2003).
[31] C. M. Will and H. W. Zaglauer, Astrophys. J. 346, 366

(1989).
[32] M. C. Miller, Astrophys. J. 581, 438 (2002).
[33] C. M. Will, Astrophys. J. 611, 1080 (2004).
[34] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical Recipes in Fortran, Second Edition
(Cambridge University Press, Cambridge, England, 1992).

[35] S. A. Hughes, (private communication).
[36] B. Schutz, Nature (London) 323, 310 (1986).
[37] D. Markovic, Phys. Rev. D 48, 4738 (1993).
[38] D. E. Holz and S. A. Hughes, astro-ph/0212218.
[39] B. S. Sathyaprakash and B. F. Schutz, Classical Quantum

Gravity 20, S209 (2003).
-24


