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Merging compact binaries are currently regarded as the most promising source of gravitational
waves for the planned Earth-based LIGO/VIRGO laser-interferometer detector system, and wiB be
an important source also for similar, lower-frequency detectors that might be flown in space (e.g. ,

the proposed LISA mission). During the orbital inspiral, if one or both bodies are rapidly rotating,
the general relativistic spin-orbit and spin-spin coupling (i.e., the "dragging of inertial frames" by
the bodies' spins) cause the binary's orbital plane to precess. In this paper we analyze the resulting
modulation of the inspiral gravitational waveform, using post -Newtonian equations to describe the
precession of the orbital plane, but only the leading-order (Newtonian, quadrupole-moment approxi-
mation) equations to describe the orbit, the radiation reaction, the inspiral, and the wave generation.
We derive all the formulas one needs to readily compute the spin-modulated gravitational waveform
(within the post-Newtonian approximation and the approximation that the precession frequency is
much smaller than the orbital frequency). We also develop intuition into what the modulated signals
"look like, " by a variety of means. We provide approximate, analytical solutions for the precessional
motion and the modulated waveforms for two important special cases: the case where the bodies
have nearly equal masses and the case where one of the bodies has negligible spin. For these cases,
for almost all choices of binary parameters, the motion is a simple precession of the orbital angular
momentum around the nearly fixed direction of the total angular momentum, with a few tens of
precession periods as the waves sweep through the LIGO/VIRGO observational band. However,
when the spin and orbital angular momenta are approximately anti-aligned, there is a transitionat-
precession epoch during which their near cancellation causes the binary to "lose its gyroscopic
bearings" and tumble in space, with a corresponding peculiar sweep of the waveform modulation.
We also explore numerically the precessional behaviors that occur for general masses and spins; these
typically appear quite similar to our special-case, simple-precession, and transitional-precession so-

lutions. An Appendix develops several diagrammatic aids for understanding intuitively the relation
between the precessing orbit and the modulated waveform.

PACS number(s): 04.80.Nn, 04.30.Db, 9?.60.3d, 97.80.Af

I. INTRODUCTION

Merging compact binaries, i.e., neutron-star —neutron-
star (NS-NS), neutron star —black-hole (NS-BH), and
black-hole —black-hole (BH-BH) binaries, are currently
regarded as the most promising source of gravitational
waves for the planned LIGO/VIRGO laser-interferometer
detector system [1—3]. LIGO/VIRGO will have good sen-
sitivity in the range 10—500 Hz, and hence will observe
the last few minutes and last several thousand cycles of
the inspiral waveforms.

Present address: Center for Radiophysics and Space Re-
search, Cornell University, Ithaca, NY 14853.

t Present address: Department of Electrical Engineering,
Massachuset ts Institute of Technology, Cambridge, MA
02139.

To lowest order, the inspiral and the resulting wave-
form are described by the "Newtonian" quadrupole for-
mula. It has recently been pointed out [3—5] that post-
Newtonian corrections to the waveform, though small
instantaneously, produce large cumulative effects, which
may permit fairly sensitive measurements of certain com-
binations of the binary's masses and spins. The cumula-
tive effects are of two types [3]. (i) Post-Newtonian cor-
rections to the binary s inspiral rate result in a large, sec-
ular correction to the phase of the waveform. Details of
this accumulating phase correction have been computed
by Lincoln and Will [6], Cutler et al. [3], Poisson [7],
and Kidder, Wiseman, and Will [8], based in part on the
earlier work of Wagoner and Will [9], and of Blanchet,
Damour, and Iyer [10,11], and the accuracy of the in-
formation that LIGO/VIRGO should be able to extract
from the accumulating phase correction has been corn-
puted by Cutler and Flanagan [4]. (ii) Post-Newtonian
spin-orbit and spin-spin couplings cause the orbital plane
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to precess tens of times as the waves sweep through the
LIGO/VIRGO band, thereby modulating the waves' am-
plitude, phase, and polarization [3]. For large spins the
effects on the waveform can be quite dramatic, as one
can see from a brief perusal of Figs. 5 and 11—18 below.

In this paper we explore in detail the modulation of the
waveform due to spin-induced precession. This modula-
tion is qualitatively different &om other post-Newtonian
effects. Since our principal purpose in this paper is to
explore this "new" behavior, we will isolate it by neglect-
ing other post-Newtonian corrections to the waveforms.
Most especially, we will neglect other effects of the bodies'
spins, such as their direct wave emission and their contri-
bution, via radiation reaction, to the waves' cumulative
phase correction. These other spin effects have been ex-
plored by Kidder, Wiseman, and Will [8], by Kidder [12],
and by Cutler and Flanagan [4].

The spin-induced modulation will be important not
only for waves from normal-mass compact binaries (M
1—10 Mo), which lie in the LIGO/VIRGO frequency
band, but also for waves emitted by supermassive black-
hole binaries (M 10 Mo —10 Mo) and by stars
and small black holes spiraling into supermassive black
holes. These low-&equency waves are targets for laser-
interferometer detectors that might be flown in space in
the early 21st century, e.g. , the proposed LISA ("Laser
Interferometer Space Antenna" ) mission [13], which is
currently the subject of a one-year study funded by the
European Space Agency.

The rest of this paper is organized as follows. In
Sec. II we briefly review the "lowest-order" waveforms
that one calculates ftom the binary's time-varying New-
tonian quadrupole moment, neglecting spin effects. In
Sec. IIIA we write down the post-Newtonian equations
that describe the precession of the orbital plane. In
Sec. III B we derive the equations that describe the corre-
sponding modulation of the gravitational waveform, and
in Sec. IIIC we give a simple expression for the Fourier
transform of the modulated waveform. In Sec. IV we spe-
cialize to two important special cases, for which the pre-
cession equations simplify greatly and in the same man-
ner: the case where the bodies have nearly equal masses
and the case where one of the bodies has negligible spin.
In Sec. IVA we write down and discuss the precession
equations for these two cases, neglecting spin-spin cou-
pling (which is of post2-Newtonian order) but keeping
spin-orbit coupling (which is of post~ s-Newtonian order).
The precession can take two forms: simple precession
and transitional precession. Simple precession, which is
in some sense the norm, occurs whenever the binary's to-
tal angular momentum vector is not small compared to
the orbital or spin angular momenta, i.e., whenever the
orbital and spin angular momenta do not conspire to al-
most cancel each other. In that case, we shall show, the
direction of the binary's total angular momentum vector
remains nearly axed during the inspiral, and the orbital
angular momentum vector (i.e., the normal to the orbital
plane) precesses about that direction. In Sec. IVB we
construct analytic expressions for simple precession and
the resulting modulation of the gravitational waves. In
Sec. IV C we examine several explicit examples of simple

precession and the corresponding waveforms. In a forth-
coming paper [12] Kidder will present an analysis similar
to what we present in Secs. IV A, B, and C; his work
will differ &om, and improve upon, ours by incorporat-
ing all the post-Newtonian corrections to the waveform
through posts~2-Newtonian order (corrections which we
have neglected here for simplicity), in addition to the
post /'2-Newtonian and post Newtonian precessional ef-
fects.

In Sec. IV D, we discuss the breakdown of simple pre-
cession due to near cancellation of the orbital and spin
angular momenta, and we analyze the resulting trnnsi
tiona/ precession of the orbit (a loss of gyroscopic sta-
bility which causes the binary to tumble in space) and
the corresponding waveform modulation. In Sec. V we
discuss the general case, where the bodies have arbitrary
spins and masses. The precession and waveforms in the
general case are qualitatively quite similar to the special
cases considered in Sec. IV, as we illu:trate with several
numerical examples. An appendix develops concepts and
tools for understanding, intuitively, the amplitude and
phase modulation produced by any precession of the or-
bital plane.

An important question not addressed in this paper is
how well the modulation can be measured, given realis-
tic detector noise, and how accurately one can thereby
measure the bodies' spins. We plan to address this issue
in future work, in a follow-up paper to Ref. [4].

Throughout we use units where G = c = 1.

II. NONPRECESSING BINARIES: ORBITAL
INSPIRAL AND THE LOWEST-ORDER

WAVE FORM

We consider the gravity wave signal measured by a sin-
gle L-shaped interferometric detector at some location on
Earth. We attach a Cartesian coordinate system to the
detector, with x and y axes along the detector's arms and
z axis in the vertical direction as shown in Fig. 1. We de-
note unit vectors aloag these three axes by x, y, z and we
denote by N the unit vector pointing towards the source
binary, and by (8, $) the spherical polar coordinates of
N with respect to our Cartesian coordinates.

To further establish notation, let us review the lowest-
order description of the inspiral waveform measured
by such a detector; i.e., the "Newtonian, quadrupole-
moment approximation" (as given in numerous refer-
ences, e.g. , [14]),which neglects spins, higher multipoles,
and other post-Newtonian corrections. We denote by Mq
and M2 the masses of the binary's two bodies, and by r(t)
the vector pointing from Mq to M2 at retarded time t.
We assume the orbital eccentricity is negligible (which
will be true if the compact binary was born with orbital
period P & 1 h and the orbit has since decayed due to
gravitational radiation reaction [15]). Then the orbital
angular momentum is given by

Mx/2r 2Z,

where M = Mq + M2 is the binary's total mass, p =
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waves' tidal distortion is a squeeze, not a stretch, along
the transverse projection of the stars' retarded separation
vector r(t); see the Appendix.

The strain h(t) that the waves produce in the inter-
ferometric detector is the following linear combination of
h+(t) and h, (t),

h(t) = F+(0, P, g)h+(t) + F„(0,P, g)h„(t), (3)

where I"+ and I"&, are "detector beam-pattern" coeS-
cients that depend in the following way on the source
direction (0, $) and on a polarization angle Q:

F+ (8, P, g) =
z (1 + cos 8) cos 2P cos 2g
—cos 8 sin 2P sin 2g,

F&&(0, $, $) = 2(1 + cos 8) cos2gsin2$
+ cos csin 2$cos 2g .

(4a)

(4b)

FIG. 1. A Cartesian coordinate system (z, y, z) attached
to a gravitational-wave detector, and the geometry of a coa-
lescing binary relative to these coordinates.

h+(t) = — 1+ (L N) cos 24(t),rD (2a)

2@M
hx (t) = — —2L . N sin 24(t) .

rD

Here D is the distance to the source and 4'(t) is the angle
~A

in the orbital plane &om the principal+ direction +N x L
to the bodies' separation vector r; see Fig. 1. The over-

all minus sign in Eqs. (2) results from the fact that the

MiMq/M is its reduced mass, r—:[r[ is its orbital diam-

eter, and L is the unit vector along L.
The binary's circular orbit, when projected on the

plane of the sky at the detector's location (i.e. , projected
orthogonal to the waves' propagation direction), looks el-

liptical; see inset in Fig. 1. The principal axis of this or-
bital ellipse, which points along kN x L, will be called the
waves' principal+ direction; an axis that is rotated coun-
terclockwise &om it by 45 in the plane of the sky will

be called the waves' principalx direction. We resolve the
waves into two polarization states: the principal+ state
with polarization axes along and perpendicular to the
principal+ direction, and the principalx state with po-
larization axes along and perpendicular to the principal x
direction. Any plane-fronted gravitational wave traveling
in the —N direction can be written as some linear com-
bination h+ (t) x {principal+ polarization tensor} plus

h„(t)x {principalx polarizaton tensor}, where h+(t) and

h„(t)are positive, by convention, whenever the tidal de-

formations along the principal+ and principalx direc-
tions are stretches (as opposed to compressions).

With these conventions, in the Newtonian, quadrupole-
moment approximation, the gravitational-wave fields
h+(t) and h&& (t) are given by

FL z —(L N)(z N))
g = arctan

~

N (Lxz) )

[Note: In Figs. 9.2, 9.8, and 9.9 of Ref. [14], g is shown
with the wrong sign (i.e., opposite to the above). The er-
ror is confined to those figures; the equations in Ref. [14]
are all in accord with the sign convention used here. ]

In the next section we shall divide the precession's
modulational effects into an amplitude modulation and
a phase modulation. To aid in this, we rewrite the signal
strain (3) in the conventional amplitude-and-phase form

h(t) = —A(t) cos[2C (t) + p] . (6)

where A(t) and p (not to be confused with the source's
direction angle P) are given by

A(t) = 1+ (L N) F+ (8, $, $)rD
a /2

+4 L N F„'(8,$, $) [ (7a)

, ( 2L N F(0$$) t

([I+(L N) ]F,(~, &, &) f
We will refer to p as the signal's polarization phase. We
have defined the amplitude-and-phase decomposition 7
with an overall minus sign to emphasize the fact that the
waves' tidal distortion is a squeeze, not a stretch, along
the transverse projection of the stars' separation vector
r; cf. the Appendix.

Equations (3)—(7) describe the waves in terms of the

direction to the source N [and its polar angles (8, P) rela-
tive to the detector's Cartesian coordinates], the vertical

direction z at the detector, the normal L to the binary's
orbital plane (and the associated polarization angle g),

The polarization angle g (shown in the lower-right inset

of Fig. 1) is the angle from the principal+ direction, +N x

L, clockwise in the plane of the sky to the direction of
constant azimuth, +N x (N x z) = 6[—z+N(N z)]. (The
6 signs are included because g is defined only modulo
7r. ) In other words, up to an arbitrary multiple of ~,
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and the binary's total mass M, reduced mass p, orbital
diameter r, orbital phase 4, and distance &om Earth
D. When we ignore the orbital precession, then all of
these quantities are constant in time except the orbital
diaxneter r(t) and orbital phase 4(t). We obtain r(t) by
integrating the inspiral rate dr/dt = (dE/dt)/(dE/dr),
where we use the Newtonian expression for the energy,
E = —2pM/r, and the energy-loss rate given by the

quadrupole formula, dE/dt = —
6 p 2M s/r . The (well-

known) result is

Approximate equations of precession for the binary's
spins and orbit have been derived in a variety of ways

by a number of researchers; see, e.g. , Barker and
O' Connell [17] for a derivation that assumes gravity is
weak throughout the binary, and Hartle and Thorne [18]
for a derivation that permits the bodies' internal grav-
ity to be arbitrarily strong but requires their gravita-
tional interaction to be weak. After specializing to circu-
lar orbits and after averaging over one orbit, the preces-
sion equations take the following form, accurate through
post2-Newtonian order:

(256 M2)1 4 (t t)1 4 (8)

where t, is the "collision time" at which (formally) r ~ 0.
In the absence of precession, Ct—:d4/dt is simply the

angular velocity 0 of the two bodies in the orbital plane.
However since our definition of 4 depends explicitly on
the direction L (cf. Fig. 1), Ct will not be equal to 0
when L is time varying. To deal with this, whether the
orbit is precessing or not, we define the carrier phase of
the waveform by

1 4M' + 3M2
r3 2M'

4M2 + 3M'
2M2

3 1 A tttt———(S2.L)S, + (S1.L)S2 x L2r3-
32p2 t M&"-
5 ~ & ~ )

S
1 4M1 ™2

(
Ml/2 1)(2)L"

r3 2M'

(1la)

Ot;(t) —= f tt(t)dt.

The term "carrier" is intended to recall the carrier signal
used in radio transmission, an analogy that we will make
clear below, in Sec. III C.

We find it convenient to specify the constant of integra-
tion in Eq. (9) so that @c(t,) = C (t,), whether the orbit
is precessing or not. Evaluating the integral in Eq. (9)
using 0 = M1)'2/rs~2 along with Eq. (8), we find that,
to lowest order in M/r,

- 5/8

Ctc(t) = e(t, ) — '(p, ~'M ~
) -(t. —t) (10)

To reiterate, if one ignores precession, then C'(t) is simply
C'c(t)

Spin-induced precession causes one other quantity be-
sides r and 4 to be time dependent in the waveform

equations (3)—(7): the direction L of the orbital angular
momentum. In the next section we describe the motion
of L and the corresponding modulation of the waveform.

III. SPIN-INDUCED PRECESSION AND
WAVEFORM MODULATION

A. Equations describing orbital precession and
inspiral

We now consider the binary's spin-induced orbital pre-
cession. I et the bodies have spin angular momenta Sq
and S2, respectively. For black holes, there is a strict up-
per limit on the magnitude of the spins: ~S;] & M; . For
neutron stars the upper limit is comparable, but depends
somewhat on the (uncertain) nuclear equation of state.
Most candidate equations of state yield an upper limit of
]S;~ & 2M; for uniformly rotating neutron stars [16]. To
simplify the discussion, below we will assume ~S;] & M;
for all bodies.

W

1 1 3—S2 —-(S1.L)L x S1,
r 2 2

1 4M2 + 3M1
r3 2M2

1 1 3
+ —-S1 ——(S1 L)L x S2 .r'2 2

(lib)

(1lc)

Here an overdot represents "d/dt" and to this order
of approximation, r(t) is given by Eq. (8) and L(t) =
p(Mr)1~2 [Eq. (1)]. The first square bracketed terms in
Eqs. (lla, b,c), which involve just one spin S, are due to
post -Newtonian-order spin-orbit coupling, and the sec-
ond square-bracketed terms, involving two S's, are due
to post -Newtonian-order spin-spin coupling. The last
term in dL/dt [Eq. (lla)] is due to radiation reaction
[cf. Eqs. (1) and (8)]; it is the only term that changes
the magnitude of any of the angular momenta. Note
that the change in the total vectorial angular momentumJ:—L+ Sq + S2 is entirely due to this radiation-reaction
term; Eqs. (11) imply that

~ (react) 32 p,
2 (Ml

5r (r) (12)

In Sec. IV, we will derive approximate, analytic solu-
tions for L(t) for special cases. Before doing so, however,
we must deal with a few other issues:

In writing the angular-momentum evolution equations
in the form (11), we have used the fact that, to lowest
order, radiation reaction causes ~L~ = L to decrease, but
does not acct ~S1~ and ~S2~. Since this fact might not
be obvious, we now demonstrate it by computing the
leading-order radiation-reaction torque on the binary's
bodies. We restrict attention to the radiation reaction
torque on body 1; the same argument will apply to body
2. Since our goal is an order of magnitude estimate and
not an exact equation, we shall simplify the calculation
by treating body 1 formally as a Newtonian-order star,
and we shall set p Mq M2 M, and let the radius of
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where X~p is the binary's quadrupole-moment tensor,
and, in order of magnitude,

dsy /dts 2f15 Mv/2 —ii/2 (14)

Inside star 1 we introduce coordinates x' = z' —z1',
where z1' is the star's center of mass. Then the radiation

reaction acceleration —V4(reac ) produces a torque w on
star 1 (about its center-of-mass), whose components are

(px, z )dVi i
~~ic 2 d Ikl

5 dts

where p is the star's density, and the integral is taken
over star 1. Because tidal distortions of the shape of the
star are extremely small (see below), to high accuracy
the star is axisymmetric about its spin axis; this symme-

try, together with our assumptions that R1 M1 M
and that the star is rapidly rotating and thus strongly
centrifugally Battened, implies that

star 1 (which is actually a neutron star or black hole) be
of order its gravitational radius, R1 M1 M, and let
the star's spin be of order its maximum allowed value,
S1 M1 M . The gravitational radiation-reacton
potential inside the star is given by [19]

5
@(react) 1 d X~y

5 Ch5

1 + (L(t) N) cos 24'(t),

2@M —2L(t) N sin 24(t),

h(t) = —A(t) cos[24 (t) + y(t)],

h+(t) =—

h, (t) =—

(18a)

(18c)

B. Equations describing the modulation of the
vraveform

In this section we describe the modulation of the wave-
form caused by the orbital precession. A key point is that
(as we show below) the orbital period is much shorter
than the timescale for L to change significantly; i.e. , L is
roughly constant over many gravity wave cycles. There-
fore to a good approximation we can simply take over the
expressions (2)—(7) for the wave fields H+(t) and h&& (t),
and the detector-measured waveform amplitude A(t) and
polarization phase y(t), but plug into those expressions
the time-varying L(t) obtained by solving the precession
equations (11). This approximation will be correct up to
terms of order the precession frequency over the gravity
wave frequency.

Note that the expressions for h+(t), h&& (t), A(t), and

p(t) in Eqs. (3)—(7) depend on L(t) explicitly through
the L N terms and implicitly through g. Thus, to be
completely explicit, our precession-modulated fields and
gravitational waveform are

(pz, z')dV, = M (ah~'+ bS iS i) (16) where

for some a and b that are dimensionless and of order
unity. The term ah~. vanishes when contracted into
e ~ d X /dt so

A(t) = "
~

1+(L(t) N) F+'(g, p, g(t))D ~-
1/2

+4 L(t) N F„'(9,g, g(t)) I, (19a)

2 d'2isa && M3S
5 dt5

M 13/2 —11/2 (17)
and where

2L(t) . N F„(0,y, g(t) )

&[1+(L(t) N) ]F+(~ & &(t)) j
(19b)

Here, in the second line, we have used Eq. (14). Notice
the following: (i) In order of magnitude, the radiation-
reaction torque (17) is smaller by (M/r)s, i.e. , by
three full post-Newtonian orders, than the spin-orbit cou-
pling torque (lib), and smaller by two full orders than
the radiation-reaction-induced loss of orbital angular mo-
mentum, dL/dt. (ii) The scalar product of the radiation-
reaction torque (17) with Si vanishes (by the antisym-
metry of e'~"), so at this leading order in the radiation
reaction, the magnitude of the body's spin, S1, remains
constant. (iii) To produce a change in Si, the radiation-
reaction acceleration must couple to a nonaxially sym-
metric piece of f(pxzx )dVi. The dominant deviation
&om axisymmetry is due to tidal distortion by the gravity
of the star's companion, and it is smaller by (M/r) than
the axisymmetric part of f (pz~x')dVi Correspo. ndingly,
the S1-changing piece of the radiation-reaction torque
will be a full five post-Newtonian orders smaller than
dL/dt, and we can safely ignore it.

The spin-up of the bodies due to tidal interactions is
also negligible for the cases of interest to us, as shown by
Bildsten and Cutler [20].

/'L(t) z —(L(t) N)(z N)i
N (L(t) x z)

(20)

Intuitive, diagrammatric methods for visualizing the
L(t)-induced modulation of A and p, for the special cases
where the source is directly underfoot or overhead, are
given in the Appendix.

In addition to the modulation of the polarization phase

y discussed above, there is an additional modulation of
the waveform phase due to an e8ect which is akin to the
Thomas precession of the electron's spin in a semiclas-
sical model of the hydrogen atom. Recall that in Sec.
II we introduced a distinction between the carrier phase
4'c(t) defined as the integral f Odt of the bodies' an-

gular velocity in the orbital plane, and 4(t), defined as
the angle between the orbital separation vector r" and the
principal+ direction +L x N. [The latter definition was

required in order for Eqs. (2) for h+(t) and h&& (t) to be
valid. ] We emphasize that we are not presently concerned
with corrections to the waveform phase 4(t) that are due

to post-Newtonian corrections to A(r) or A(r). Rather,
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we are calculating that correction to 4(t) which arises
from the changing orientation of the orbital plane, even

if we take 0 and 0 to have their lowest ord-er, "Newto
nian" values. We define the precessional correction to the
orbital phase b4(t) by

C(t)—:4&(t) + bO(t),

and we now proceed to find an expression for b4 in terms
of L(t).

By definition, the unit orbital separation vector is

Here C'c (t) is the integral of 0(t), which is given to lowest
(Newtonian) order by Eq. (10). To determine A(t), rp(t),
and bCh(t) one solves Eqs. (lla) —{llc) for L(t) and plugs
the result into Eqs. (19), (20), and (29).

We note that b4(t) depends on L(t) and the location
of the binary on the sky, but is independent of the orien-
tation of the detector arms. By contrast, A(t) and rp(t)
do depend on the detector orientation, through the terms
F+ and Fx in Eqs. (19).

r = cos Ch(t) g+ sinO(t) L x (, (22) C. Fourier transform of the modulated signal

where

LxN
[1 (L . N)2]1/2

is the principal+ direction. We also have

r" = 0L x r" —(L . r) L . (24)

The first term on the right side of Eq. (24) rotates r
about L, while the second term ensures that r" remains
orthogonal to L; the second term basically corresponds
to "Fermi-Walker transport" of r due to the precession
of the orbital plane. From Eq. (22) we have

In this section we derive a simple expression for the
Fourier transform of the precession-modulated signal,

h)f) = f df e "'t h(t) . (31)

+oo

s(t) hiv (t)dt. (32)

This is useful for the following reason. The process
of searching for a merging-binary waveform h(t) in
LIGO/VIRGO data will consist of beating the "Wiener-
filtered" version of the waveform, her (t), against the mea-
sured detector strain s(t), i.e., taking the inner product

cos 4(t) = g r. (25)

Taking d/dt of Eq. (25) and using Eqs. (22) and (24), we
obtain

Here the Wiener-filtered waveform her(t) is defined by
the equation

hiv(f) = h(f)/S~(f)
~ht ~—OsinCh=(, ' r+ ( r

r" —0 sin 4

or [from Eqs. (21) and (9)]

bCh = —(,
' r/sinCh. (27)

Using the definition (23) of (,
' and expression (22) for r,

a few lines of algebra allow us to rewrite Eq. (27) as

r
(LKN) L.

) 1 —(L N)2)
(28)

This equation must be integrated subject to the bound-
ary condition that b4 = 0 at the end point of the coales-
cence [Eq. (10) and associated discussion]; therefore,

bO(t) = — „(Lx N) L dt . (29)
I. . N

(1 —(L.N)2)

h(t) = —A(t) cos[24c (t) + 2b4(t) + y(t)] . (30)

This integral cannot be expressed in terms of N and the
instantaneous value of L at time t; it depends on the
full time history of L between times t and t, [as one can
readily verify by expressing the integrand as F . dL and
then noting that the curl of F {in L space) is nonzero].

In summary, our precession-modulated waveform is

where Sh, (f) is the spectral density of the detector noise.
(We refer the reader to Ref. [14] for the definiton of Sg(f)
and for a discussion of noise sources in the LIGO/VIRGO
detectors, and to Ref. [1] for estimates of Sg (f) in the first
LIGO detectors and more advanced LIGO detectors. )

Radio transmission provides a useful analogy for an in-
tuitive understanding of signal modulation. The unmod-
ulated signal is like the radio station s high-frequency
carrier signal, while the effect of precession on the grav-
ity waveform is like the modulation. [The analogy be-
comes better in the limit that the smaller mass M2 ~ 0,
since then the inspiral rate also approaches zero and (the
quadrupole piece of) the unmodulated "carrier" wave-
form becomes truly monochromatic. ] In this spirit, let
us define a complex "carrier" signal hc(t) by

(t)
i 2 —2i4 t:(t)

D r(t)
(34)

where t = t(f ) is the time at which the carrier frequency,

where Chc(t) = f 0dt is the carrier phase we defined in
Eqs. (9) and (10). The Fourier transform of the carrier
signal can be calculated approximately using the station-
ary phase method, which yields

M1 MQ (idf /dt) i/2 et [2tt' f 'h 24t (t)) for f ) 0
h (f) ~ D (t)t

0 for f(0,
(35)
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4'~/m = 0/vr, equals f .The difference between expres-
sion (35) and the actual Fourier transform of h~(t) is
of the order of the ratio of orbital period to inspiral
timescale, which is negligible for cases of interest.

We next define a complex modulation factor

JI

and hx have different dependences on L . N than those
given in Eqs. (2).]

IV. BINARIES %KITH M M OR S 0

- —1

A( ) g( )
1 2 —~[2sc(t)+ ~(t))

Dr(t) (36) A. Orbital evolut ion equat ions,
and approximate description of the evolution

Then h(t) = Re A(t) hc (t) . Since A(t) varies much

more slowly than 24'c (t), we can again use the stationary
phase method to approximate h(f); the result is

2A(t(f)) hc(f) for f ) 0

—,'A*(t(~f~)) hc(~f~) «r f & o.

The factor 2 in Eq. (37) arises because the real and imag-

inary parts of A(t) hc (t) contribute equally to the Fourier
transform, in the stationary phase approximation.

The stationary phase result given above [Eq. (37)] dif-

fers from the true h(f) by terms of order the ratio of the
orbital period to the precession period; i.e., the station-
ary phase method computes h(f) less accurately than

hc(f), because the precession time scale is much shorter
than the inspiral time scale. We can improve our calcu-
lation of h(f) as follows. The stationary phase results
quoted above can be viewed as merely the lowest-order
results in a power series expansion for the true Fourier
transform, where the expansion parameter is the ratio of
the orbital period to the precession period. We improve
Eq. (37) by adding the next-order term in the expansion;
the result is

S = Sg+Sp (39)

has constant magnitude. Then, for both of our special
cases, the inspiral and precession equations (11) can be
brought into the simple form

In this section we construct approximate, analytic solu-
tions of the inspiral and precession equations (11) for two
important special cases: (1) Mq ——M2 and (2) S2 = 0.
Both cases are of interest. The prototypical example
where Mq M2 would be an NS/NS merger, since mea-
sured neutron star masses all cluster near 1.4MO. The
prototypical example where S2 can be neglected would

be a neutron star spiraling into a much larger, rapidly
rotating black hole. In that case, the black-hole spin Sq

will dominate the orbital precession unless Sq is nearly
parallel or antiparallel to L.

Our Grst approximation is that me neglect the spin-

spin terms in the Mq —— M~ case. These neglected
terms are of post -Newtonian order and thus will typ-
ically be small compared to the post / -Newtonian spin-
orbit terms, which we retain. Given this approximation,
the orbital evolution equations (11) imply that Sq S2 is

constant in time and therefore the total spin vector

h(f) = -', A(t)h&(f) + . —2sithc(f)
1 dA dhc (f) -32 ' rMi'l'

(40a)

(38)

for positive f, and the complex conjugate of this for neg-
ative f Here, agai.n, t = t(f) is the time at which the
carrier frequency 0/vr is equal to f The form. ula given

in Eq. (38) differs from the true h(f) by terms of order
(orbital period/inspiral time scale) and terms of order
(orbital period/precession period) 2.

In this paper, for simplicity, we use only the lowest-
order version of the carrier signal hc (t), and our deriva-
tion of A(t) is of similarly low order. However, our
formula (38) has the virtue that it can be applied es-
sentially without modification to versions of hc (t) and
A(t) that are correct to higher post-Newtonian order.
One just plugs the more accurate versions of hc (f) and
A(t) into Eq. (38), while also using an improved ver-
sion of t(f). [Actually, the above statement applies only
to the dominant, mass-quadrupole piece of the wave-
form. If one includes the radiation due to the binary's
time-varying current-quadrupole and mass-octupole mo-
ments (or other, higher-order moments) then the situa-
tion is somewhat more complicated, since different mo-
ments emit gravitational radiation at different harmonics
of the orbital frequency, and their contributions to h+

Here

S=0,

2M' j rs

3M, I ZS= 2+ —xS.
2M') rs

(40b)

(40c)

(40cl)

(41a)

is the binary's total angular momentum and

S= iSi and S = S/S (41b)

are the magnitude and direction of the total spin.
Let us first describe qualitatively the solutions of the

evolution equations (40). The orbital evolution can be
divided into two pieces: (1) a precession of the plane
containing L and S, and (2) the motion of these vec-
tors in this plane. The in-plane evolution is driven by
the radiation-reaction-induced orbital shrinkage. This
shrinkage causes the length L of L to decrease, but leaves
constant the length S of S [Eq. (40b)] and the angle

arccos(L . S) between L and S [cf. Eqs. (40c,d)]. This
evolution is depicted in Fig. 2. Note that the angle be-
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( 3M2) J
y — 2 +

2M') rs (42)

[cf. Eqs. (40c,d)] that is fast compared to the orbital in-

spiral rate L/I B.ecause L precesses around 3, the value

of

J = IL (48)

5

3,
J,

[cf.Eqs. (40)], averaged over one precession, is nearly par-
allel to J, and therefore to a reasonable approximation J
changes in magnitude but not in direction; this approxi-
mation becomes exact in the limit that L/(A~ J) ~ 0.

We can integrate Eq. (42) to obtain a back-of-the-
envelope estimate of the number of precessions in the
observable inspiral, and to see how the precession rate
scales with the frequency of the emitted gravity waves.
We define the precession angle o. by

da/dt = 0„. (44)

4, (h, (t,(t. & ),

FIG. 2. The in-plane evolution of the total spin angular
momentum S, orbital angular momentum L and total angular
momentum J for binaries governed by Eqs. (40). When L
and 8 are nearly oppositely directed as in drawing (b), the
precession initially is simple, then at times t t3 it becomes
transitional, then returns to simple. In case (a), the precession
is always simple.

tween L and J must continually increase.
The precession of the plane containing L and S can

take one of two qualitatively different forms, which we

shall call simple precession and transitional precession.

We shall devote four paragraphs to simple precession,
and then shall describe transitional precession.

In simple precession, S and L both precess around J
with an angular velocity

We consider two limiting cases: L )& S and S » L.
When I )& 8, J = L, so da/dt oc L/rs oc r 2 s Equa-.
tion (8) then implies that dr/dt oc r s, so da/dr oc r~~2

Since here we are only interested in the change in a, we
set a = 0 when r = 0. Then a(r) oc r ~, or a(f) oc f
where f is the frequency of the emitted gravity waves
at orbital separation r. Thus, of all the precessions that
occur in the "observable" frequency range 10 —1000 Hz,
90% of them occur in the range 10—100 Hz. That is, most
of the precessions occur at low frequencies. When S )& L,
J = S, so da/dt oc S/rs. Hence da/dr is constant, so
a(r) oc r and a(f) oc f 2~s Thus, w. hen S )& L, roughly
80% of the precessions in the observable frequency range
occur between 10 and 100 Hz. Typical cases of simple
precession will be intermediate between these two limit-
ing cases, so we can expect 80 —90% of the "observable"
precessions to occur in the 10 —100Hz frequency range.

Putting back the constant factors that we omitted in
the above scaling analysis, we find

2 2 1

(45)

Note that when L )& S, the number of precessions is
independent of S. This is an important point: slowly
spinning bodies produce roughly as many precessions as
rapidly spinning ones; however the cone of precession is
narrow if S is small.

The "simple" precession of L and S around a nearly
constant J, which we have been discussing, can break
down and be replaced by tronsitional precession under
just one circumstance: If L and S initially point in nearly
opposite directions and L is initially longer than S [as in
Fig. 2(b)], then the orbital inspiral will bring the binary
into an epoch [time t ts in Fig. 2(b)] where L —S,
and hence J and O„aresmall and the precession rate is

no longer fast compared to the inspiral rate. Before this
small- J epoch, L and S undergo simple precession around
J. Then, during the small-J epoch, the precession be-
comes transitional: the binary loses its "gyroscopic bear-
ings" and tumbles in space, and that tumbling causes J
to swing around to a new direction, and causes L and S,
locked onto each other, to swing around with J. Then,
after the small- J epoch, ~nd S resume their simple pre-
cessional motion, but now around the new J direction.
We shall explore this transitional precession in Subsec. D
below; but first, in Subsecs. B and C, we give a quan-
titative analysis of simple precession and present some
concrete examples.
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B. Simple precession

In this section we give a quantitive analysis of simple
precession. For ease of analysis, we introduce the nota-
tion

J = L Ql + 2rcp + p2, (48a)
Jh

(48b)
gl + 2K' + p2

and correspondingly, the precessional angular velocity
(42) can be written as

&i, =
I
2+

I
Ql+2Kp+p' —,.

3M2 l 1.
2Mi ) T

(49)

We now solve for the motion of J. DifFerentiating
Eq. (48b) and using the simple precessional equations
(40c,d), we find

j S(l+ Kp) —L(~+ p)
J=

(1+2~/+ p2)s/2 (50)

Thus, at any instant, J moves on the unit sphere along
the great-circle arc from L towards S; see Fig. 3. Because

FIG. 3. Simple precession: L, J, and S undergo tight-spiral
motion on the unit sphere, with precessional opening angles
AJ (( Al, and with AL, gradually increasing; cf. Fig. 2.

K =—S L, q(t) —= S/L(t) .

The evolution equations (40a,b) imply that r is a con-
stant of the motion, whereas (40c,d) imply that p grows
with time: j ) 0. Note, however, that because Sq & Mq
and similarly for body 2, p(t) is bounded above by

M'+M' (M)'"
MiM2 (r)

The magnitude and direction of the total angular mo-
mentum can be expressed in terms of K, p(t), I,(t), and
the directions L and S as

L and S are themselves precessing around 3 with preces-
sional angular velocity O„[Eq.(49)], this (tiny) motion

of J must also be a precession at the same angular veloc-

ity. We denote by Jo the fixed direction around which 3
and L both spiral.

The opening angle of the cone on which J's precessional
motion takes place is given by

/L)
AL, ——arcsin I

,n„)
pV'1- '

= arcsin (52)
i gl + 2K'+ p')

Because of the gradual orbital inspiral, the values of
the precessional opening angles A J and AL, gradually
change; i.e. , J and L undergo tight spirals on the unit
sphere rather than precise circular motions; see Fig. 3.
Because AL, ) 0 [cf. Fig. 2 or difFerentiate Eq. (52)], the
spiral of Al. is always outward from J. Note that for
AL, ( vr/2 this means that the cone on which L spirals
is opening up around +J, but for Al. ) m/2 [as at times
t ) ts in Fig. 2(b)], the cone is closing down around —J.
The tiny spiral of J is outward when Al, ( ~/2, and can
be either outward or inward when AL, ) 7t/2, as one can
see by difFerentiating Eq. (51) and comparing with the
sign of cosAL, = L J = (1 + rp)/gl + 2K'+ p2 [«.
Eq. (48b)].

Note that if S )) I near the end of the inspiral (p » 1),
then the value of cos Al, must approach K at late times,
since then J = S. Thus, while J is roughly fixed, L and S
efFectively "trade places" during the evolution from early
to late times: At early times L is close to J, and S orbits
them at angle arccos (r) radians away; at late times S
and J are close, and L orbits them at an angle arccos (r)
away.

Finally, we show how to put our description of sim-
ple precession on a more rigorous basis. In so doing, we
will isolate the suKcient condition for simple precession.
We described above how the approximate constancy of J
arises when the precession timescale 0„is much shorter

the inspiral timescale L/L Actually, even .if the ratio of
timescales is small, J can still change significantly in one
precession period if the magnitude of J is much smaller
than the magnitude of L (as can happen if L and S are
roughly antialigned and have roughly equal magnitude).
These considerations suggest defining a "small parame-
ter" e = (L/ 1) x (ratio of precession timescale to inspiral
timescale), i.e. , I I-/I

I
Jl/J

J Op Op
(53)

and solving the precession equations as an expansion in
powers of ~.

A J ——arcsin = arcsin
(fbi, j (Ap (1+2Kp+p2))

( —", (M/r)'~'&pl —~2= arcsin I (51)
( (1+ 4Mi/M2) (1+2K'+ p2j j

Similarly, the opening angle of the cone on which L pre-
cesses is
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16 (M/r) ~2

5 (1 + 4 M2/Mi) (1 + 2tcp + p2)
(54)

First we note that e is indeed small for "typical" cases.
From Eqs. (42) and (8), we have

L z is maximum; and note that, by virtue of Eq. (56),
cA

the opening angle AL, of the cone on which L precesses
can be regarded equally well as the angle between L and
Jp, or between L and J, aside &om &actional errors of
order e . Then the geometry of Fig. 4 dictates that

Thus, for example, tc ) 0 ~ e ( —(M/r) ~, which is
« 1 except near Gnal coalescence.

%e can now jusify our assertion that, for small e, both
J and L spiral around a single fixed direction, JQ. We do
so by explicitly exhibiting Jp.

(z —JQ cos 8 )L =- Jp cos AL + sin AL, cos o!
sin 8'

Jh

Jp xz+ . , sin AL, sinn .
sin 0 (59)

Jp ——J —eJ x L.

It is straightforward to check that Jp vanishes up to terms
of order e2. Equivalently, we may write

Of the quantities appearing in this equation, only Al.
and a change with time during simple precession. By
Eq. (48b), cos AL, = L J is given by

J = JQ+ e JQ x L+ O(e') .

To the same order, L is given by

(56) cos AL, (t) = y, /Mr(t) + S(~

E

1/2
'

p/Mr(t) + S(( + Sg

(60)

L = O„JQx L + eA„(JQx L) x L, (57)

where the precession frequency 0„is given by Eq. (49).
Finally, dividing Eq. (51) by Eq. (52), we find that

sin Ag

Sln AL,
(58)

1. Algebnuc solution to simple-pression equations

Thus e being small implies that sin A~ is small compared
to sin AL„aswell as being small compared to unity.

dn/dt = O, (t) (61)

[Eq. (57) dotted into JQ x L]. Changing the independent
variable from t to r using (8), Eq. (61) becomes

Here S~~
= Sr. is the component of the spin S along L,

S~ = Sy 1 —tc2 is the length of its perpendicular com-
ponent, and r(t) is given by Eq. (8). A similar algebraic
expression for the angular position o, of L can be obtained
from its differential equation:

We now solve Eq. (57); this will provide us with an al-

gebraic expression for L(t) which is accurate up to terms
of O(e~). Referring to Fig. 4, let JQ point in the (8', gV)
direction relative to the detector's Cartesian coordinates
(cf. Fig. 1); let a be the instantaneous angular location of

cA

L in its precessional motion around JQ with o. = 0 when

dr

This is easily integrated to give

2Y' ' —3S~~(&~M. + S,~) ~Y96p3M3

—5 (1+ 4Ms/Mi'l
[

(~v'M. + S~, ) + S~'
32 ( pM2 )

(62)

(p/Mr + S)( 5—3S~~Si arcsinh~ + const, (63a)S~ )

where

Y = p Mr + 2Sii pyMr + S . , (63b)

FIG. 4. Geometry for a binary's simple precession relative
to the Earth-based detector's Cartesian axes; cf. Fil;. 1.

This completes our solution for L(t) for our two spe-
cial cases. As a check, we have integrated the orbital
evolution equations (40) numerically for a broad range
of initial conditions and have found that, whenever the
constraint e && I is satis6ed, the evolution is in excellent
accord with the "simple"-precession behavior embodied
in Eqs. (56), (59), (60), and (63).
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2. Algebreic expressions for simple-precession
maveforms

The gravitational waveforms emitted by the binary are
described by Eqs. (18)—(21), and (10), (29), and (4), in

which h+(t), b, && (t), A(t) and p(t) are represented as sim-

ple algebraic functions of L(t), and b@ is represented as
an integral of a simple algebraic function of L(t). In
these formulae, L(t) appears in the combinations L N,
N (L x z) and L . z. Straightforward algebra based on
Eq. (59) gives for these quantities

cos 0' sin AL, cos o.
L N= Jo N cosAI, —

sin 0'
cos 8 sin AL, cos n - - „sinAL, cos a

+ +N Joxz
sin t9' Sill 8

(64a)

N (Lxz)=N (Jpxz) cosAI. —cos8'sinAl. cosn - „,- - sin AL, si nn
+ N. zcos8' —N Jp

sin 8' S1I18
(64b)

L. z = cos8'cos AI. + sin0'sinAL, coso. , (64c)

where

Jo ' N = cos 8 cos 8' + sin 8 sin 8' cos(p —p'),
N ' (Jo x z) = sin8sin8'sin(p —p'),

(64d)

(64e)

and AL, and n are given by Eqs. (60) and (63).
completes the solution for h+(t), h„(t),g(t), and p(t).

As was noted following Eq. (29), $4(t) cannot be ex-
pressed as a function of N and the instantaneous value
of L; it depends on the full time history of L between

time t and the end point of coalescence, t, . However, the

growth of this phase shift over one precession period can
be described by an approximate analytical expression.
That expression turns out to depend on whether the line

containing N lies outside or inside L's cone of precession

(i.e. , on whether ~Jp N~ is greater or less than [Jo L~),

but is otherwise independent of N. If we approximate
cos AL, as constant over one precession period, then by

changing variables from t to n using da/dt = Az, we find

(with some eKort) that

f
27r cos Ag

dn =
& 2x(—cos AL, + 1)

0 ~O!
, 2vr( —cos Al, —1)

Jp L ) /Jp. N/,
Jp L & -[Jo N[.

We see &om Eq. (65) that the "average value" of h4
can be roughly as large as the precessional frequency0„.Thus the term "2b4" in Eqs. (18) can change the
total number of cycles in the wave fields and the ob-
served waveform by roughly twice the total number of
precessions —a sizable correction.

This completes our analytic treatment of simple pre-
cessional waveforms for our two special cases.

C. Examples of simple precession

1Mo neutren star and
maximally spinning 10MO black hole

As an example of simple precession and the waveform
modulation it produces, consider a M2 ——1Mo nonspin-
ning neutron star spiraling into a Mq ——10MO maxi-
mally rotating black hole, so S = Sq ——Mj . (We also
gave a brief discussion of this example in Ref. [3].) We
shall begin following the binary's evolution at an initial
moment t —t; = 204 s before the final collision when
the orbital radius is r; = 63.2M and the gravitational-
wave &equency (twice the orbital &equency) is f, = 11.7
Hz. This is roughly the time when the gravity wave
signal enters the frequency band accessible to the ad-
vanced LIGO/VIRGO detectors. We shall follow the

evolution up to t, —ty ——0.03 s, when the orbital ra-
dius is r y

——6.96M and the gravitational-wave frequency
is fy

= 321 Hz. Because photon shot noise in the broad
band detectors rises sharply for f ) 100 Hz, more than
99% of the signal-to-noise has been accumulated by this
point. Note that as the binary spirals in from r; to ry,
the parameter p = S/L increases &om p, = 1.258 to

3.79. Thus, throughout the LIGO/VIRGO ob-
servational band, the hole's spin angular momentum is
somewhat larger than the orbital angular momentum.

In our example the orbit has a modest inclination to
the hole's equatorial plane, arccos(L S) = 11.3 (0.197
radians), so r = L . S = 0.9806. Then, as the binary
spirals in from r; = 63.2M to ry ——6.96M, the opening
angle of L's precession cone increases from Al. , ——6.30
to Al. y

= 8.95, and the parameter ~ = sinAg/sinAI.
that characterizes our simple-precession approximation
increases &om e; = 1.17x 10 to ey

——7.11x 10 . With
c so small, our approximation is excellent throughout the
inspiral.

In our example, the binary is directly underfoot as
seen from the detector, so N = —z + bk, where b is
an arbitrarily small angle [required because some of our
formulas, e.g. , Eq. (5), become singular for sources that
are precisely overhead or underfoot]. At the initial time
t;, the orbit is precisely edge-on as seen Rom Earth,
with the orbital plane parallel to the detector's x arm
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and the orbital angular momentum along its y arm, so

L; = y; and the black hole's spin is parallel to the de-
tector's plane (perpendicular to our line of sight), so

S; = 0.9806y —0.1960fc. These initial conditions are de-
picted in the upper left portion of Fig. 5. The subsequent
precessional motion of L is shown in Fig. 6. The initial
position of L in this figure is at the origin (since L; = y),
which corresponds to an angular location a; = vr/2 in the
conventions of the previous subsection. The total num-
ber of precessions during the inspiral 6.'om r; = 63.2M to
rf = 6.96M is (af —a;)/2n = 23.8. The opening up of
the precession cone from AL, ; ——6.30 to AL, y

——8.95 is
evident in the figure. The center of the precession cone
is at Jo ——J = —0.1097x+0.9940y (aside from fractional
corrections of order e).

The gravitational-wave signals &om this binary are de-
picted in Figs. 5 and 7, for two possible orientations of
the detector. The first orientation, referred to as +'
in Figs. 5 and 7, is the one assumed until now in all
of this paper's formulas and figures: arms along x and

y, so h(t) = 2(h++ —h++) = h+ (where h+P is the

-0.15

-0.25

To
Earth

Q)
~wl
+s

Q5

I

0.05

0.15

Lz

FIG. 6. The precession of L (and hence also of the orbital
plane) for the binary whose initial conditions are depicted in
the upper left part of Fig. 5.

5
A~)

Ax&

2..

0
100 30 10 3 1 0.3 0.1 0.03

time to collision (M&/10M~) (sec)

FIG. 5. Amplitude modulation of the gravitational-wave
signals from a nonspinning Mq ——1Mo neutron star spiral-
ing into a maximally spinning M& ——10Mo black hole. The
binary is underfoot as seen from the detector of Fig. 1, with
its initial spin, orbital, and total angular momenta as shown
in the upper left part of this figure (where the direction N
from Earth to the binary is into the paper). The +' detec-
tor, whose measured wave amplitude A+I is shown here as
a function of time t, —t to final collision, has arms oriented
along the x and y directions (ss in Fig. 1), i.e. along the hor-
izontal and vertical axes of the upper left part of this figure.
The x' detector, with measured wave amplitude A„i,has its
arms rotated 45 to the +' detector, i.e., along -(x+ y) and
-(—x+ y). The signals' amplitude A and phase y (Fig. 7)
are defined by Eq. (6), where 4(t) is the angular position of
the binary in its orbit; cf. Fig. 1. The vertical scale in this
figure is srbitsry, but linear. This figure (and the accompa-
nying Figs. 6, 7, and 6) are also correct for any other binary
with the same geometry, same mass ratio M2/Mz ——0.1, same
S2 ——0 and same maximal spin Sq/Mz = 1, but different Mz,'
the only change is an increase in the time scale by a factor
Mz/10MO and a decrease in all frequencies by the inverse
factor 10M~/Mq. Setting Mq ——10 Mo gives an example
relevant to proposed space-based interferometers; see Sec.
IV C 2.

-0.1

100

100
3n/2

30 10 3 1 0.3 0.1

time to collision (Mi/10M&) (sec)
30 10 3 1 0.3 0.1

0.03

0.03

FIG. 7. Polarization phase of the gravitational-wave signals
for the binary and detectors of Fig. 5. The phases @+I and
y„rare shown, modulo 2m, as functions of time to collision

"transverse-traceless, " tensorial gravitational-wave field

[14]). The second orientation, referred to as x' in the
figures, is rotated 45 relative to the first, so the arms are
along 2(x+ y) and s(—x+ y), and h(t) = h „:—h„.

The amplitudes A+ (t) and A&& (t) of the signals h(t)
measured by these two detectors are shown in Fig. 5.
Each complete period of the orbit's precession produces
one cycle of amplitude modulation; the 23.8 precessions
in the LIGO band produce 23.8 modulation periods.

Along the A+i(t) curve is marked the gravitational
waves' carrier frequency f = 0/m. Because the radi-
ation reaction grows stronger as the binary spirals in-
ward, the carrier frequency sweeps upward ("chirps") at
a gradually growing rate. Also indicated along the A+ (t)
curve is the number of carrier-&equency oscillation cycles



6286 APOSTOLATOS, CUTLER, SUSSMAN, AND THORNE 49

during one (or, early on, several) modulation periods.
Early in the LIGO/VIRGO band there are several hun-
dred carrier cycles per modulation cycle; late, there are
several tens. The modulation shapes are explained in the
Appendix using diagrammatic tools developed there to
provide an intuitive understanding of precession-induced
modulation.

The fundamental modulation frequency [which is equal
to the binary's precession f'requency 0„/2m. (1/r() J/rs]
remains 6nite in the limit that S and L are parallel. By
contrast, the depth AA of the modulation goes to zero in
the limit of parallel S and L, because the opening angle
AL, of the orbit's precession cone goes to zero.

Since in our example the precession cone is rather
narrow, AL, 0.1 rad, it should not be surprising that
the modulation depth is modest for the +'-oriented de-
tector: AA+ /A+ AL, 0.1. Remarkably, by con-
trast, for the x' detector, the modulation is very large:
AAX /Ax 1. The reason is that once each cycle,
the precession carries the binary near a special orien-
tation L y, which is half-way between the x' de-
tector's two arms; by symmetry, the x' detector's re-
sponse vanishes for this orientation. One might have

expected that, because of the narrowness of the pre-
cession cone, the binary would always be near this x'-
suppressing orientation, and therefore A&& would remain
always & AL, A+ 0.1A+ . Not so. Each cycle of preces-

sion carries L through an angle of Ag 2AL, 0.2 rad in
the detector plane; and this drives the signal amplitude
up to A„sin(26@)A+ 4AL, A+ 0.4A+ . This
explains how, despite the narrow precession cone, the x'
signal manages to have both a relatively large maximum
amplitude A „2A+,and a very large depth of
modulation, AA„A„.

Our example also illustrates a general rule of thumb

for simple precession: The maximum amplitude A „of
a detector's signal during a modulation cycle is generally
in the range (0—1)A+ „,where A+ „

is the maximum
amplitude of the principal+ mode during the precession;
and the depth AA of the modulation is generally in the
range (0—1)sin(4AL, )A+ „(butof course AA & A).

Figure 7 shows the polarization phases p+ (t) and

p„(t)for the two detectors. For the +' detector, the
modulation of the polarization phase is modest: Ay+
0.1 to 0.2 rad. For the x' detector, the polarization
phase modulation is very large: p&& grows secularly,
though at a somewhat irregular rate, changing by —2'
with each cycle of orbital precession. As is discussed
in detail in the appendix, this secular growth of p„(t)
is caused by the fact that each precession takes L once
around y, the bisector of the detector's two arms (see
Fig. 6). If the binary's orientation were shifted away

from y (leftward in Fig. 6) by an additional 3, then L
would still pass near the arms' bisector y during each
precession but would not go around it; as a result, the
polarization phase would have the finite-oscillation form
that is shown as a dotted line in Fig. 7. Although the
solid and dotted curves look radically diferent, the effects
on the signal h(t) are only slightly different for the two
cases: the signal is not sensitive to 2' changes in y; and
modulo 2vr, the solid and dotted p&& (t) are essentially

identical, except for the very short time when the dotted
curve is Hying upward.

Finally, Fig. 8 shows the phase correction term 2bC

throughout the inspiral. (We recall that this term is in-

dependent of the waves' polarization and independent of
detector orientation, and that by convention it vanishes

at the end of the inspiral. ) In this example, 2b4 accumu-
rh

lates slowly because N does not lie inside L's precession
cone and cos AL, is close to 1; cf. Eq. (65). Moreover the

accumulation is very steady, since L never comes close to
N.

gp4Mo/&p~Mo black hol-e binary

100 30 10 3 1 G. 3 Q. j
f., lI1K to (olllhloll (i%11/i%I ~ ') {s(-'( I

FIG. 8. The phase correction term 2b4 for the binary of
Fig. 5, shown as a function of time to co}lision t, —E. This
term is independent of detector orientation.

Because the equations of orbital dynamics and wave-

form generation do not contain any intrinsic, binary-
independent length scale, the solutions are easily scaled
from one binary to another binary with the same values of
all dimensionless quantities, but different absolute masses

and spins. For example, Figs. 6—8 remain valid if we in-

crease the mass Mi of the black hole by some arbitrary
factor and increase all times and decrease all frequen-

cies by that; same factor, while holding fixed the dimen-
sionless quantities M2/Mq ——0.1, S2 ——0, Sq/M~ = 1,
L S = v = 0.9806, and the keeping initial orientations
as shown in the upper left of Fig. 5.

Most interestingly, if we increase Mi by a factor 10,
we obtain an example relevant to space-based interfero-
metric detectors such as the proposed LISA mission [13].
The binary is made of a nonspinning 10 Mo black hole

and a maximally spinning 10 MO black hole; instead of
sweeping upward through the LIGO/VIRGO band from

f, = 11.7 Hz to fy = 321 Hz, the waves depicted in the
figures sweep through the band of space-based interfer-
ometers, from f; = 0.00117 Hz to 0.0321 Hz; and instead
of lasting for t, —t; = 204 s, the depicted waves last for
2.04 x 10 s or about a month, which is a reasonable mea-

surement time for a space-based interferometer. (On the
other hand, it is not at all obvious whether the event rate
for 10 Mo/10 Mo black-hole —black-hole binaries will

be interesting, even given that the proposed detectors
could see them out to cosmological distances. )
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8. ¹utron-star —neuhm-stet binaries

When the binary's two bodies have equal masses, M~ ——

Mz, their orbital angular momentum L = @+Mr
4M gr/M is always somewhat larger than their maxi-
mum possible total spin, Sm~ ~ Mz + M2 ——-M . As
a result, the total angular momentum J is always fairly
close to L, which means that the opening angle AL, of the
precession cone is always small.

For example, consider two equal mass neutron stars,
Mq ——M2 ——1.4Mo, each with maximal spin, and with
S inclined at the same angle to L as in our previous
Mi/Mz ——10 examples: arccos(S L) = 11.3 . Then, as
the waves' carrier &equency sweeps through our previ-
ously chosen band of 11.7 Hz to 321 Hz, the precession
cone grows &om AL, 1.5 to 3.6 . With precession so
tight, the modulation is typically quite weak: For the ini-
tial spin, orbit, and detectors oriented as in our previous
Fig. 5, the +' detector has amplitude and phase modu-
lations shaped very much like those of Figs. 5 and 7, but
with modulation amplitudes AA+ /A+ Ap+ 0.01.
As before, the very specially oriented x' detector shows
deep modulation like that in Figs. 5 and 7, but only at
a price of having an amplitude roughly 10 times smaller
than that of the +' detector: Ax /A+ 4AL, 1/10.

As another example, let one of the 1.4Mo neutron stars
be maximally spinning (Si ——Miz) and the other be non-

spinning (Sz ——0), and open up the angle between S and
L to 60 (so ic = L S = 0.5). For variety, change the
initial geometry to that shown in Fig. 11 (which is pre-
sented in another context in Sec. VA): The detector's
arms are along the x and y axis (as in all our formu-
lae); the binary instead of being underfoot is at a zenith
angle of 45 along the same azimuth as the x arm, i.e.,
N = (z —x) / v 2; the total angular momentum (and hence
the center of the precession cone) points directly upward,
J = z; and L and S initially are oriented around J as
shown. The resulting amplitude modulation of the de-
tector's signal is shown in Fig. 11 below (where in the
horizontal &equency scale we must set M = 2.8Mo. Al-
though the modulation is modest, growing &om roughly
15'%%up to roughly 30'%%up during the inspiral, the number of
precessions is rather large: Between 10 Hz and 1000 Hz
there are 70 precession periods, with 90'%%up of them occur-
ring between 10 Hz and 100 Hz [in good agreement with
Eq. (45)].

D. Transitional precession

Since L oc r / while S is constant during the inspiral,
at sufBciently early times L is always much larger than
S, J L, e &( 1, and the binary undergoes simple pre-
cession. However, if L and S are nearly antialigned, and
if S ) L by the end of the inspiral, then the binary must
pass through an intermediate stage when L and S almost
cancel and hence J is much smaller than L or S. In this
intermediate stage, e = L/(JA„) = ~J~/(JO„) is large
(& 1) for two reasons: I,/J is large and 0„i oc rs/J is
large. Now, recall that the "simplicity" of simple pre-
cession was due to the smallness of the parameter e.
The simple precessional motion that we described in Sec.
IV B therefore breaks down, and (in numerical examples)
L and S appear to "tumble, " while locked in each oth-
ers' embrace. The tumbling continues until the orbit has
shrunk to the point that L is significantly smaller than S.
At that point J S, and simple precession resumes. Be-
cause the tumbling stage represents a short-lived "tran-
sition" between two stages of simple precession, we call
it trunsitional prece88ion.

In the initial stage of simple precession, J moves on
a tight outward spiral away &om some initial direction
J; = (Jp);„;t;i, while L (which is approximately equal to
J) moves on a looser outward spiral away from J;. During

Ala

transitional precession, J "migrates" &om the vicinity
of J; towards a new, fixed location Jf = (Jp)6„~. In
the final stage of simple precession, J moves on a tight,
inward spiral towards Jf, while L points almost 180
away &om J and spirals more loosely inwards towards
—Jf.

Figure 9 illustrates the evolution of L(t) before, during,
and after transitional precession. In the example shown,
Mi/M2 ——10, Si ——Mi, S2 ——0, cos z = 179.3, and
the epoch of evolution shown begins when r = 330M
and f = 1(10MO/Mi) Hz, and ends when r = 6M and
f = 400(10MO/Mi) Hz.

The entire sequence that we have just described-
&om simple to transitional and then back to simple
precession —will typically not take place during the time
that the binary is "visible" to LIGO/VIRGO (or, in the

1
0. 95

L, p. 9
0.85

Generul

description

In this section we discuss transitional precession. Our
understanding of this behavior is based largely on numer-
ical integrations of our special-case precession equations
(40) for Sz ——0 or Mi ——Mz. We have not been able to
derive an approximate analytic solution for L(t) during
transitional precession, as we could for simple precession,
but the main qualitative features of the phenomenon are
clear.

FIG. 9. An example of the path traced by L(t) during the
evolution from simple precession to transitional precession
and back to simple precession. In this example, Mq/Mz ——10,
arccos(e) = 179 3, r/M de.creases from 330 to 6, and f
increases from 1(10Mpp/Mq) Hz to 400(10MO/Mq) Hz.
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supermassive-binary case, to LISA). It is easy to see
why: To include the entire sequence, the binary must
enter the observational band with L/S & 2 and leave
it with L/S & 2, which means that L must change by
a factor 4 or more in the observational band. Since

f oc r s~z oc L 3, this means that f must change by
& 4 = 64. However, f „/f;„64is the entire avail-
able observational band for both LIGO/VIRGO (withf;„10Hz and f „500Hz) and LISA (withf;„~10 Hz and f~ x ~ 10 Hz). Therefore, to
include the entire sequence, one must carefully adjust
Mi, M~, Sq, and K = S . L so the spin and orbital an-
gular momenta are nearly antialigned, and so I,/S 2
when the binary is just entering the observational band,
and L/S 1/2 when it is just leaving. Moreover, one
must choose Mi/Mz large enough that, when the binary
begins its final coalescence (at r/M 6), L/S has gotten
at least as small as 1/2.

Just how precisely antialigned must L and S be, i.e. ,

how close to —1 must K = L S be, to produce transitional
precession? It is clear from the previous discussion that
transitional precession occurs when ~ becomes of order
unity. Let us define

8 = K+ 1. (66)

tl+
~

~t' M
4M1 ) (rmax )

(67)

for small b. [Equation (67) assumes that e does in fact
reach a maximum at some finite r.j Thus, for transitional
precession to occur (e & 1/2) at r „/M & 20 (when
there is still a significant number of orbits to go before the
binary's final coalescence), b' must be & 0.04 so r = —1+8
must lie between —1.0 and —0.96, which means that the
angle between L and S must exceed 164 . Tlhus, we see
that transitional precession will be observed for only a
very narrow range of initial conditions.

Even if L and S are sufBciently antialigned to produce
transitional precession, the rest of the fine tuning will
typically not be achieved in nature. Either L/S will be
somewhat less than 2 when the binary enters the obser-
vational band, and the initial period of simple precession
will be lost in the detector's low-&equency noise; or else
L/S will be somewhat greater than 1/2 when the binary
leaves the observational band, and the final period of sim-
ple precession will be lost in the detector's high-frequency
noise, or will not occur at all because orbital plunge and
final coalescence intervene.

g. Remarks on the final direction of J
% hen the full sequence of simple precession to transi-

tional precession to simple precession occurs, how does
the final direction of the binary's total angular momen-
tum, Jf = (Jp)s ~, depend on its initial direction,

Using Eq. (54) we find that, for small b, e reaches its
maximum value when p = (1 + 2b), which corresponds
to an orbital separation r „/M= (S/MiMz) (1 —4b);
there e is

J:(Jp) 't' ] and on the binary's masses and spins~
We do not have a complete answer to this question, but
it is perhaps useful to include here some general remarks
and an example. (In this discussion, we ignore the pos-
sibility that the inspiral ends before S » L.)

For this discussion, it is convenient to introduce spher-
ical coordinates (O', P') on the unit sphere, with J; at the
north pole, 0' = 0. We choose the location of the merid-
ian P' = 0 as follows. We choose some instant of time
which is defined in a dimensionless way, such as the mo-
ment when r/M = 100 or the moment when L = S, and

we let gV = 0 correspond to the direction of J at that
instant . It is then clear by the scale invarianc e of the
problem that the coordinates of Jy can depend only on
the following dimensionless quantities: rc, M2/Mi, and
S/M .z

We obtain qualitative information about the depen-
dence of Jy on these quantities by considering two limit-

ing cases. First consider the case where K is precisely —1.
Then J simply "flips" when L becomes smaller than S,
so Jy

———J;. The second, obvious limiting case is that

Jy ~ J, for z )& —l.
By continuity, we see that Jy must move from 8' = vr to

O' = 0 as we increase K aw ay from —1. Because typically
all this motion occurs as K changes by only 0.04, Jy
must be a rather sensitive function of e.

Figure 10 shows the path traced out by Jy as the an-

gle arccos(K) between L and S is varied, for one par-
ticular choice of mass and spin ratios: M2/Mi ——0.2,
S = Si ——Mi, and S2 ——0. Each point on the curve is
the end result of evolving the precession equations (40)
from very early to very late times to determine Jy . In
each evolution, J, was taken to be at 8' = 0, and P' = 0

i.6&

c

Y

FIG. 10. The end point of transitional precession, i.e., the
J%

direction Jy of the binary's total angular momentum J at
asymptotically late times, expressed as a function of the initial
direction J, of J (which is taken to be the north pole, 8' = 0)
and of the angle arccos(e) between L and S. The mass and
spin ratios are chosen to be Mz/M, = 0.2, S, /Mq ——1, and
S2 ——0. Each point on the curve is the result of evolving
the precession equations (40) from early to late times for that
point 's value of x. One more piece of initial data, besides
J;, is needed to fully specify the evolution: the azimuthal

Ps

direction of J at some early, but 6nite, time. In this figure,
J is chosen to point in the direction P' = 0 at the moment
when the gravity wave frequency f equals 10(M/10MO) Hz.
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was delned by the location of J at the moment that the
gravity wave freqency f swept through 10(M/10Mo) Hz.
For the chosen mass and spin ratios, r /M = 25, so
&om Eq. (67) we would expect transitional precession to
"turn off" (e & 1/2) for K & —0.978, when the angle

between L and S is roughly 168 . This is in reasonable
agreement with the numerical results shown in Fig. 10.

A
5.

3

2

V. NUMERICAL SOLUTIONS FOR ARBITRARY
MASSES AND SPINS

0 10
I s ~ s ~ & ~ I

30 100
f (10 MO/M) (Hz)

300

A. Relation of the general case to our special cases

In this section we move beyond our two special cases,
M~ ——M2 and S2 ——0, and discuss binaries with arbi-
trary masses and spins (consistent with the requirement
that S; & M; ). In this general case we were unable
to solve the precession equations (11) analytically, and
so had to resort to numerical integrations. One would
expect, however, that, for "typical" inspirals, the pre-
cessional behavior will qualitatively resemble the simple
precession described in Sec. IV, if precession is impor-
tant to the dynamics at all. That expectation is based
on the following argument, which begins by dividing
binaries into two categories based on their mass ratio:
Mz/Mi « 1 and M2/Mi = 1. If Mz/Mi « 1, the am-
plitude of precession will be very small unless Sq )) S2,
since Sz/L(t) & (Mz/Mi)[M/r(t)j / « 1. If Si &) S2,
the larger spin should dominate the precessional dynam-
ics, and the smaller spin can be treated as a perturba-
tion on the special-case solutions of Sec. IV. Similarly, if
Mq M2, the mass difference can be treated as a per-
turbation to our special case solutions for Mq ——M2.

The above argument is not very compelling, especially
when applied to "intermediate" cases such as Mz/Mi ——

1/2. One therefore seeks guidance from numerically gen-
erated examples. Now, in principle one could system-
atically look for qualitatively new types of solutions by
integrating the precession equations {11)for thousands
of randomly chosen values of M] y M2) S] y S2) and ini-
tial directions Si and Sz. This we have not attempted
to do. However, we have integrated equations (11) for
a wide variety of initial conditions which we "put in by
hand"; the results seem to support the conclusion that
most cases give "somewhat ragged" versions of the simple
precession described in Sec. IVB. That is, J is roughly
fixed, and L(t) roughly traces an outward spiral from J.

To illustrate this, Figs. 11—18 display several examples
of numerical solutions to the precession equations (11),
augmented by the signal-amplitude equations (19a) and
(20). The drawing in each figure depicts the initial val-
ues of the vectors L, Sq, S2, and S at the moment that
the gravity wave frequency sweeps past 10(10Mo/M) Hz
(corresponding to r/M = 75). For ease of comparison,
we have chosen J = S + L to point initially along the
z-axis in all our examples; the precise details of how
the other initial vectors were chosen are spelled out in
the caption of Fig. 11. In each 6gure, the curve on the
sphere is the time evolution of L(t) from the initial mo-

FIG. 11. This and the next seven figures (Figs. 11—18) de-

pict the precession of the orbital angular momentum direction
L snd the resulting modulated signal amplitude A(t) in the
detector, as computed by numerical integrations of the preces-
sion equations (11) together with Eqs. (19s) and (20). In sll
these figures the detector's legs are along the x and y axes, the
direction from the detector to the binary is N = (z + x)/v 2,
the total spin S = Sq+ Sq has magnitude S = Mq, the angle
between the orbital angular momentum L and the total spin
S is 60 so rc = L S = 0.5 (except in Figs. 17 snd 18, where
that angle is 178 and ~ = —0.99939), and at the beginning
of the integration —when f = 10(10MO/M) Hz, r/M = 75,
and L = v 75MiMz —the total angular momentum J = L+ S
points in the z direction, and L is in the z-z plane, on the
+x side of the z-axis, while S is in the x-z plane, on the —z
side of the z-axis. When both bodies are spinning (Figs. 12,
14, 16, snd 18), their spins initially lie in the y-S plane. The
figures ditfer from each other in their mass ratio Mz/Mi and
in the magnitudes of the bodies' spins. In this figure, the
masses are equal, Mz/Mi ——1, body 1 is maximally spinning,
S& ——M&, and body 2 is nonspinning, S~ ——0, so S = S&

and L have the initial values shown in the drawing. The sub-
sequent motion of L is shown as an outward-spiraling path
on the sphere. The graph shows the amplitude A(t) of the
gravitational-wave signal measured by the detector.

5.

4.

3.

2.

0
30 100
f (10 MO/M) (Hz)

300

FIG. 12. Same as Fig. 11, and with the same mass ra-
tio Mi/Mz ——1 but with both bodies maximally spinning,
S~ ——Mq, Sq ——M2, so the initial S~, Sq, S, and L are as
shown.
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FIG. 13. Same as Fig. 11, but with Mq/Mq —— 0.3,
S~ ——M~ and Sq ——0, so the initial Sq and L are as shown.

FIG. 15. Same as in Fig. 11, but with Mz/Mq ——O. l,
S~ ——Mq and Sq ——0, so the initial Sq and L are as shown.
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FIG. 16. Same as in Fig. 11, but with Mz/Mq ——0.1 (as in
Fig. 15) and Sr ——Mr, Sz ——Mz, so the initial S~, Sz, S,
and L are as shown.
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FIG. 17. Same as in Fig. 11, but with L and S nearly an-

tialigned (i.e. , separated by an angle of 178 so m = —0.99939),
and with M2/Mq ——0.13, Sz ——Mq, and Sq = 0, so the initial
S~ and L are as shown. The evolution illustrates transitional
precession and the subsequent return to simple precession.

FIG. 14. Same as Fig. 11, but with Mz/Mq ——0.3 (as in
Fig. 13) and Sq = Mq, S2 = M2, so the initial Sq, Sz, S,
and L are as shown.

ment, when f = 10(10Mo/M) Hz and r/M = 75 to a
final moment, when f = 440(10Mo/M)Hz and r/M = 6.
The curve plotted in each figure is the amplitude A(t) of
the gravity-wave signal that would be measured by a de-
tector whose arms lie along the x and y axes, when the
binary is in the direction N = (z + x)/~2. The signal
amplitude A(t) is actually plotted against the frequency

f of the gravity wave signal at time t; that is, we plot
A(f):—A(t(f)). [We emphasize that we are not plotting
the Fourier transform of A(t).] The overall normalization
of A(f) is arbitrary.

We have arranged Figs. 11—18 in pairs: an example
with just one body spinning, Sq ——Mq and S2 ——0
(for which the special-case theory of Sec. IV is valid),
is paired with a corresponding example having the same
mass ratio and same initial L and S, but with both bodies
maximally spinning, so S~ ——M~ and S2 ——M2 . We em-
phasize that when both bodies are spinning (Figs. 12, 14,
16, and 18) the precession and signal amplitude depicted
are solutions of the full post2-Newtonian precession equa-
tions (ll), including the spin spin terms; th-e spin-spin
terms either vanished identically or were ignored in our
analysis of special cases in Sec. IV.

The first pair of examples, Figs. 11 and 12, are for a
mass ratio M2/Mi ——1.0 and for K = 0.5 (so the angle be-

tween L and S is 60 ). Because the two masses are equal,
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0. 5

Eqs. (lla) and (lib), we find

L2+ S2 ——0. (68)

0.4

0.3

We can absorb the constant of integration into the defi-
nition of Lq,. this leaves L2 ———S2. The first-order piece
of Eq. (llc) then becomes

0.2

0.1

10 30 100
f (10 Mo/M) (Hz)

300

0, = (3Mi/2Mz) L/r (70)

(69)

We see from Eq. (69) that L2 spirals around Li with
an epicyclic frequency

FIG. 18. Same as in Fig. 11, but with the same near an-
tialignment and mass ratio as in Fig. 17 (angle 178' between
L and S, z = —0.99939, Mz/Mi ——0.13), and with Si ——Mi,
Sq ——Mq, so the initial Sq, S2, S, and L are as shown. The
evolution is essentially the same as in Fig. 17, but with visible
"epicycles" due to the relatively rapid precession of Sz around
L.

the solutions for L(t) and A(t) showa in Figs. 11 and 12
would be identical, were it not for the spin-spia terms in

Eqs. (11). We see that the spin-spin efFects are notice-
able, but do not change the basic, qualitative behavior of
the solution. Quantitatively, the Sz ——0 case contains 0.5
fewer precessions in the observable range than the case
where S2 is maximal.

Figures 13 and 14 show an example where Mz/Mi ——

0.3 and ~ = 0.5; while Figs. 15 and 16 are for M2/Mi ——

0.1 and e = 0.5. Again, the precessional motion of L and
the signal amplitude are nearly the same in the corre-
sponding cases, i.e., the efFect of the second spin is small.
This is to be expected, since Sz/Si ——M2 /Mi is 0.09
in Fig. 14 and 0.01 in Fig. 16.

Finally, ia Figs. 17 and 18 we show an example con-
taining transitional precession. Here Mz/Mi ——0.13 and
It' = —0.99939 (so the angle between L and S is 178'), and
our integrations start [at f = 10(10MO /M) Hz) when the
transitional precession is already underway: the figures
show the end of transitional precession and the resump-
tion of simple precession. The two solutions for L(t) are
again qualitatively similar, but, interestingly, the two-
spin case (Fig. 18) displays a large number of "epicycles"
on top of the basic one-spin evolution (Fig. 17). The
epicycles are reBected in the many little wiggles visible
in the waveform's amplitude.

We can understand these epicycles as follows: Since
S2/Si ——(0.13)2 = 0.017, we can treat the second spin as
a perturbation. Actually, the formulation is slightly sim-
pler if we treat M2/Mi ——0.13 as the expansion parame-
ter rather than S2/Si, while regarding Mi and Sz/M2
as axed. Then S2 is second order in the expansion pa-
rameter, and Sz is first order. [The term Sz is of higher
order than S2 because the epicyclic frequency diverges as
Mz -+ 0; see Eq. (llc).j We define L(t):—Li(t) + Lz(t),
where Li(t) is the "background" solution and Lz(t) rep-
resents the perturbation in L(t) due to Sz. The term
Lz(t) is second order, and Lz(t) is first order. We now ex-
pand the precession equations (ll) to first order. Addiag

that is larger than the precession frequency Q~ by
a factor (3Mi/4M2) L/ J. Using Eq. (8) for dr/dt,
the total number of epicycles between some large ra-
dius r and the final plunge can be estimated to be

(1/80)(Mi/Mz)(r/M) ~ . This corresponds to 60
epicycles for the case shown in Fig. 18, in good agree-
ment with the numerical integration.

Since basically this same perturbation analysis can be
applied to the situations shown in Figs. 14 and 16, one
might wonder why epicycles are not visible in those fig-
ures. The reason is that in these cases the ratio of
epicyclic frequency to precession frequeacy is much closer
to unity than is the case in Fig. 18, and also the ratio
~Sz x L~ to ~Si x L~ is much smaller. Therefore it is
harder to pick out the epicycles by eye.

In conclusion, it appears that the intuitive pictures
that we have derived from the study of special cases in
Sec. IV can be successfully applied to more general val-
ues of the mass and spin parameters. The "extra wig-
gles" that arise in the general case caa be understood as
perturbations on our special case solutions.
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APPENDIX: FOUNDATIONS FOR AN
INTUITIVE UNDERSTANDING OF THE

WAVEFORM MODULATION

In leading order (when one ignores orbital inspiral, pre-
cession, and post-Newtonian efFects), the gravitational
waves from a circular binary are monochromatic, and
therefore have elliptical polarization. (We regard circu-
lar and linear polarizations as special cases of elliptical. )
In this appendix we develop a set of diagramatic tools
(Figs. 19, 20, 21, and 23) for describing such waves and
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the signals they produce in a detector. These diagra-
matic tools are especially useful when the waves come
from overhead or underfoot, i.e. , when the plane of the
detector is orthogonal to the waves' propagation direc-
tion. For obliquely inclined detectors, one must apply
the tools to each detector arm separately, and then com-
bine the signals.

In Secs. 1 and 2 of the Appendix, we diagramatically
describe the waves alone (without any detector); the cul-
mination of this description is an elliptica/ polarization
diagram, which is simply related to the elliptical projec-
tion of the binary's orbital plane on the sky. In Sec. 3
we show, by examples, how to use this polarization dia-
gram (or, equivalently the orbit's elliptical projection) to
deduce the precession-induced modulations of the signal
in a detector. In Sec. 4 we derive some formulas that
underlie another diagramatic tool, the cell diagram, by
which one can deduce especially simply the signal's po-
larization phase &p. In Sec. 5 we present the cell diagram
and show how to use it. Sections 3, 4, and 5 are restricted
to detectors orthogonal to the propagation direction. In
Sec. 6 we comment on the application of our techniques
to obliquely inclined detectors.

1. Elliptically polarized gravitational waves

In building our diagramatic tools, we shall focus ini-

tially on an arbitrary, monochromatic, elliptically polar-
ized gravitational wave. Only later, in Sec. 2, will we

apply these tools to the waves from a circular binary.
For monochromatic waves, the dimensionless gravita-

tional wave fields h+ and h„,as they pass through the
laboratory, are given by

h+ ——H+ cos(~t), hx ——kH&& sin(~t) . (Al)

Here the + sign corresponds to right-hand polarized
waves and the —sign to left-hand; H+ and H~ are con-
stants, the amplitudes of the two polarization states, and
we have omitted an arbitrary phase by our choice of the
zero of time. By convention we shall insist that both am-
plitudes be positive and that H+ & Hx. The waves will
take the form (Al), with its phase delay of precisely Sir/2
radians between the two wave Gelds and with H+ & H&, ,

only for a special, unique choice of the polarization axes
with respect to which the "+"and "x"states are defined.
We shall call that unique choice the elliptical waves' prin-
cipal axes. Figure 19 shows an example of principal axes
for waves that are propagating perpendicularly out of
the paper. [To verify that any other ("primed") choice
of axes will produce a non+vr/2 phase shift between the
two fields, one need only insert Eq. (Al) into the follow-
ing standard expression [14] for the primed-axis fields in
terms of the principal-axis fields

Principal +
Axes

rincipal x
xes

Lines of Force

(Qt= 0 cot= 4n/10 (ot= 5n/10 mt= 6z/10

Instantaneous Polarization Axes

FIG. 19. Principal axes, instantaneous lines of force, and
instantaneous polarization axes for an elliptically polarized
gravitational wave with right-hand polarization and ampli-
tude ratio H&& /H+ ——0.5.

MagnItude and Direct~on
of Maximum Stretch

mf = 10m/10

(~lip
ff)t = 14m/ 1

Elliptical Polarization
Diagrams

(c)

The instantaneous tidal accelerations exerted on mat-
ter by any gravitational wave can be described by
electrical-like "lines of force"; see, e.g. , Ref. [14]. Fig-
ure 19 shows the evolution of these lines of force for the
monochromatic, right-hand elliptical waves of Eq (Al.),
with H&&/H+ ——0.5.

Note that the lines of force rotate in a right-hand man-
ner (recall that the waves are propagating out of the pa-
per), and as they rotate, the density of force lines os-
cillates. Just as in electromagnetic theory, so also here,
the density of force lines is proportional to the magni-
tude of the wave-induced accelerations. The acclerations
are strongest at ~t = 0, when only the "principal+" po-
larization is active, and weakest at ut = ir/2 when only
the "principalx" polarization is active. Note that the
rotation of the force lines is very nonuniform: slow near
~t = 0 when the large principal+ mode is active, and
fast near ~t = m/2 when the small principalx mode is
active.

Figure 20(a) is a simpler way of depicting the rota-

h+ + ih„=(6+ + ih~)e (A2)

and evaluate the resulting phases of 6+ and hx . In
Eq. (A2), Q is the angle of rotation to go from the prin-
cipal axes to the primed axes. ]

FIG. 20. (a) The rotating, oscillating stretch line which de-

picts the direction and magnitude of maximum tidal stretch
for the gravitational waves of Fig. l. (b) The elliptical polar-
ization diagram for these same waves. (c) The polarization
diagram for these waves but with their handedness changed
from right to left.
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2. Specialization to waves from circular binaries

%un, now, to the leading-order gravitational waves
from a circular binary (with inspiral, precession, and
post-Newtonian eKects ignored). Figure 21(a) depicts
the orbit of one of the binary's stars (or black holes),
projected onto the plane of the Earth's sky (i.e., pro-

Orbit
Projected on Sky

Principal +
Axes

Polarization
Diagram

FIG. 21. (a) The orbit of one of the stars in a circularized
binary, projected on the plane of the sky. (b) The principal+
axes of the elliptically polarized waves emitted by this binary;
note that these axes coincide with the projected orbit s princi-
pal axes; the principalx axes will be rotated 45 to the orbit's
axes. (c) The elliptical polarization diagram for the emitted
waves.

tion and oscillation of the instantaneous force lines. Here
we are asked to remember that the shapes of the force
lines are quadrupolar; and at each moment of time we

show, via a double-arrowed line, the direction of the in-
stantaneous tidal stretch axis (the direction of maximum
tidal stretch), and the magnitude of the tidal acceleration
along that axis. As time passes, the stretch axis rotates
and the magnitude of the acceleration oscillates (big hor-
izontal stretch at ut = 0, small 45' stretch at ~t = rr/2,
big vertical stretch at art = rr, etc.).

Figure 20(b) (which we shall call an elliptical polar
ization diagram or simply polarization diagrnm) embod-
ies the same information as Fig. 20(a), but more sim-

ply. It shows just two tidal stretch lines, the long one at
~t = 0, which points along a principal+ stretch axis and
has length proportional to H+, and the shorter one at
art = rr/2, which points along the principalx axis and
has length proporational to Hx. From this diagram,
one can reconstruct both the rotating, oscillating stretch
line of Fig. 20(a) and the time-evolving force lines of
Fig. 19. To do so, one just needs to remember that (i) the
quadrupolar-shaped lines of force rotate &om the longer
stretch line toward the shorter one, (ii) the magnitude of
the tidal accelerations is maximum when one of the in-

stantaneous polarization axes coincides with the longer
stretch line and then it is proportional to the stretch line' s
length, and similarly (iii) the magnitude of the acceler-
ations is minimum when an instantaneous polarization
axis coincides with the shorter stretch line and then it is
proportional to that stretch line's length.

Figure 20(c) is a polarization diagram for the same
waves as we have been discussing, but with left-hand
polarization rather than right: the lines of force rotate
clockwise &om the long stretch line toward the short one,
rather than counterclockwise as in Fig. 20(b).

jected perpendicular to the incoming waves' propagation
direction). Because of the projection, the circular orbit
looks elliptical, with a ratio n of minor axis to major axis
given by

n —= /L N/. (A3)

In Sec. II we de6ned the principal+ direction to be the
major axis of this orbital ellipse, and the principalx di-
rection to be rotated 45 &om it, in a counterclockwise
direction. The binary emits elliptically polarized waves
toward Earth. The waves' principal+ axes coincide with
the major and minor axes of the projected orbital ellipse
as shown in Fig. 21(b), i.e., one principal+ axis is along
the principal+ direction and the other is perpendicular
to it; and similarly for principalx. With respect to these
principal+ and principalx axes, the waves are described
by Eq. (Al), with amplitudes [cf. Eq. (2)]

4MgM2 [1+(L N) ] 4MgM2
rD x D

(A4)

Here, as in the body of this paper, Mq and M2 are the
masses of the two bodies, r is the orbital diameter, and
D the distance of the binary &om the Earth. The factor
—L N in H„guarantees that the waves' handedness is
the same as the motion of the stars around their projected
orbit (left hand in Fig. 21).

From the wave Belds (2), their amplitudes (A4), and
the principal+ axes of Fig. 21(b), we infer that the ellipti-
cal polarization diagram has the form shown in Fig. 21(c).
Notice the very simple relationship of this polarization
diagram to the projection of the orbit on the sky: The
longer stretch axis is perpendicular to the projected or-
bit's major axis, i.e., perpendicular to the principal+ di-
rection (as will always be the case); the shorter stretch
axis is rotated 45 in the direction of the orbital mo
tion (as will always be the case), i.e., in this case of left-
hand polarized waves it is along the principalx direction
while for right-hand waves it would be perpendicular to
principalx; the length of the shorter stretch is propor-
tional to o; = ~L N~ (the orbit's axis ratio); and the
length of the longer stretch is proportional to z (1+o. ).
At a retarded time when the stars' separation is along
the principal+ direction [so one of the stars is at the
location shown in Fig. 21(c)], the instantaneous squeeze
axis is along that principal+ direction, i.e., along the di-
rection from the center of the orbit to the star [cf. the
minus sign in Eqs. (2) and (6)], and the instantaneous
stretch axis is perpendicular to that direction, i.e., along
the long stretch line of Fig. 21(c). (It is this that dic-
tates our drawing the long stretch axis perpendicular to
the principal+ direction rather than along it.) An eighth
of an orbit later, when the star in Fig. 21(c) has moved
from the tail to the tip of the thin orbital arrow, the in-
stantaneous squeeze axis is along the direction to that
star, and the instantaneous stretch axis is perpendicu-
lar to that direction, i.e., along the short stretch line of
Fig. 21(c).
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3. Signal modulation for detectors orthogonal to the
waves' propagation direction

Figure 21 provides a simple, intuitive understanding
of how a binary's precession modulates its gravitational
waves: As the binary precesses, the eccentricity and ori-
entation of its projected orbit [Fig. 21(a)] oscillate, and
the polarization diagram [Fig. 21(c)],which describes the
waves, oscillates in the obvious, corresponding manner.

It is fairly easy, from the oscillating polarization di-
agram, to understand the modulation of the amplitude
A(t) and polarization phase y(t) of the signal that the
wave induces in a detector. As an example, consider the
neutron-star —black-hole binary studied in Sec. IV C 1, for
which A(t) and p(t) were depicted in Figs. 5 and 7 assum-
ing two diferent detector orientations, +' and x'. Recall
that in this example the source is precisely underfoot; i.e.,
the detector arms are orthogonal to the direction of wave
propagation. In this section and the next two, we shall
restrict attention to cases where the detector is directly
underfoot or overhead.

Figure 22 reproduces a short segment of the ampli-
tudes' time evolution (Fig. 5). In the upper left is
a schematic picture of the precessing orbital-angular-
momentum direction L (see also Fig. 6). The waves are
traveling vertically out of the paper, and the detectors'
arms are oriented as indicated by the +' and x' sym-
bols. The time-evolving projection of the orbit on the
plane of the sky is depicted in the center of the figure.
When the orbit is edge-on, we see only a line. When L
is tilted away from Earth, we see the orbit from below
(shown as a shaded ellipse); the stars move around the
ellipse in a clockwise direction, and the waves therefore
are left-hand polarized. When L is tilted toward Earth,
we see the orbit from above (shown as a white ellipse);
the stars move around the ellipse counterclockwise, and
the waves are right-hand polarized.

Consider the amplitude A+ measured by the +' de-
tector, and mentally factor out its steady, overall growth
due to the steady orbital inspiral. At time t, the or-
bit is edge on, so the waves are concentrated entirely in
the principal+ mode; and because the edge-on orbit is
almost parallel to one of the +' detector's arms, that
detector feels the full force of the principal+ waves. At

A+)

0.3 0.1

time to collision (Mq/MS) (sec)

FIG. 22. Figure used to explain the znodulation of the sig-
nai amplitudes A+~ (t) and A. x ~ (t) for the binary and detectors
of Figs. 5, 6, and 7.

time tp, I has tilted away from Earth a bit, thereby mak-
ing the orbit appear somewhat elliptical and giving a bit
of added strength to the principal+ waves. [Recall that
their strength H+ is proportional to —(1+a ), where n
is the ratio of the minor to major axis of the ellipse. ] Be-
cause the orbit's major axis is still nearly parallel to a de-
tector arm, the detector still "feels" solely the principal+
mode (even though H&& is no longer zero), and it feels the
mode's full strength; hence, A+ has gone up a bit. At
time t„the orbit has become edge-on again so H&, is
again zero, but now the orbit is tilted away from the de-
tector's arm by 2AL, 17, thereby reducing somewhat
the +' detector's response to the principal+ mode; as a
result, A+ has decreased significantly. At time td, the
orbit is tilted toward Earth and has thus become some-
what elliptical once again, thereby enhancing H+, and
again the orbit is nearly parallel to the detector's arm,
so the detector feels nearly the full force of the principal+
mode. As aresult, A+ has gone up again. At time t„the
orbit's major axis is still nearly parallel to the detector
arm. Hence the detector still feels nearly the full force of
the principal+ mode, but the orbit is now edge-on, so H+
has been reduced, and A+ has gone down a bit, relative
to the steady increase caused by the shrinking orbit.

The evolution of A&& can be understood similarly: At
time t, the orbit is edge-on, so H„=0; also the orbit
is inclined almost 45 to the arms of the detector, so
the x' detector hardly responds at all to H+. Thus,
A„ is very small. At time tg, the orbit s major axis is
still almost 45 from the detector's arms, so the detector
still responds almost solely to the principalx mode; but
now the orbit has become somewhat elliptical, thereby
exciting the principalx mode somewhat and driving A&&

upward. At time t„the orbit is edge on, so H„=-0,
but now the orbit is tilted to within 45 —2AL, 28
of the nearest detector arm, so the principal+ mode can
drive the detector significantly, thereby pushing A&, up
to its maximum value. At time td, the orbit has tilted
back to nearly 45 from the arms so only the principalx
mode can couple to the detector, and because the orbit
is only slightly elliptical, that mode produces a weakened
signal A&& . At t, the orbit is edge-on so Hx = 0, and
the orbit's major axis is still about 45 from the arms,
so principal+ mode couples hardly at all to the detector,
and A~ has become very small.

We now consider the evolution of the polarization
phase &p(t) in each of the two detectors. To deduce y at
any moment t, one need only notice how strongly each of
the two wave modes (principal+ and principalx) is cou-
pled to the detector, and combine that coupling strength
with a knowledge of the phase of the signal put into the
detector by each mode. In doing so, one must keep in
mind the overall minus signs in Eqs. (2) and (6). As one
can verify from Eqs. (2)—(6) (and as might be obvious),
the following is true.

(i) The polarization phase of the principal+ signal is
zero (i.e. , the signal h(t) goes as —cos[24(t)]} if the or-
bit s major axis (i.e. , the waves principal+ direction) is
nearer the detector's "first" arra than its "second" arm,
and the phase is 7r (the signal goes as + cos[24(t)]) if
the principal+ direction is nearer the second arm than
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the first. (The first arm is the one that, by convention,
gets stretched when 6 ) 0 and squeezed when h & 0.)

(ii) The polarization phase of the principalx signal is
—m/2, or 3m/2 (so the signal h(t) goes as —sin[24(t)])
if the waves' principalx direction is nearer the first arm
than the second, and the phase is +z/2 (the signal goes
as + sin[24'(t)]f if the principalx direction is nearer the
second arm than the Grst.

Consider, as an example, the polarization phase y&&1

in the x' detector. From the orbital ellipses in Fig. 22
and the above phasing rules, we deduce the following: At
time tg the principalx mode is dominant; because the or-
bit is seen from below and the principal+ and principalx
axes are therefore like those of Fig. 20(c), the principal x
direction is nearly along the detector's second arm; there-
fore, the polarization phase is &p&& +sr/2. At time t,
only the principal+ mode is felt, and because the orbit's
major axis is near the detector's first arm, the polariza-
tion phase is y„0.At time tg the principalx mode is
dominant, and because the orbit is now seen from above
rather than from below, its phase contribution is oppo-
site to that at time ts rp&& . —z/2. At time t, only the
principal+ mode contributes, and although one cannot
tell very clearly &om the figure, the orbit's major axis is
slightly nearer the second arm than the first, so yx ——x.
Thus, as time passes, the polarization phase grows secu-
larly more negative, decreasing by 2x with each orbital
precession —in accord with Fig. 7(b).

4. Some useful formulas for detectors orthogonal to
the waves' propagation direction

F+ ——cos2$, Fx ——sin 2$, Q = arctan(L /L„),

(A5)

and Eq. (3) then becomes

h+ ——h+ cos 2g + h&& sin 2@ . (A6a)

This is just the real part of the standard law h+, +ihx
(h+ + ih&&) e *2~ by which a gravitational-wave field ap-
pears to change when one rotates one's basis axes in the
plane orthogonal to the propagation direction [14], i.e. ,
in the plane of our chosen detectors. From the imaginary

This procedure for deducing the polarization phase can
be embodied in a simple and powerful diagram. As a
foundation for that diagram (and as an aid for readers
who might wish to explore the signal modulation more
quantitatively), we shall now specialize some of the equa-
tions of the text to detectors that are orthogonal to the
direction of the incoming waves. We shall deal with the
same two detectors +' and x' as above and as in Sec. IV
C 1 and Fig. 5, but we shall allow the binary to be pre-
cessing in any manner it wishes, and not necessarily in
the simple manner of Secs. IV B and IV C.

For the +' detector with its first arm along x and
second along y, and for our underfoot source direction
N = —z + hx with 0 & b « 1 (correspondiiig to
8 = a ——h2 and P = 0), Eqs. (4) and (5) reduce to

2@M (1+L, ) (Ly —L, ) +16L L„L,
A+ rD 1 —L,

(A7a)

p+ ———arctan,
4L.L„L,

g(1+L. )(L„-L.))
(A7b)

4(1+L ) L Ly +4L (Ly L )
&x =

2rD 1 —L,
(A8a)

I'L, (L„'—L.') &

(L~Ly(1+ L, ) j
(A8b)

These expressions can be used to verify and quantify
the discussion of the previous section. More importantly,
we shall now use the phase expressions to construct a
powerful diagram for deducing the polarization phase
modulation.

5. The cell diagram for detectors orthogonal to the
propagation direction

The detector's polarization phase p assumes the spe-
cial values of 0, z/2, z, and 3'/2 whenever the binary's
orbital angular momentum L is oriented in one of a set of
special directions relative to the detector's arms. These
special orientations can be deduced equally well &om
Eq. (A7b) or Eq. (A8b); and they are depicted in Fig. 23.
Note that the special orientations comprise boundaries or
"walls" in orbital-angular-momentum space. Each wall
in the figure is labeled by the value that p assumes when
L lies in it. The walls with p = 0 or vr are shaded; those
with p = vr/2 or 3vr/2 are white.

We shall call Fig. 23 a cell diagram because its walls
divide the orbital-angular-momentum space into sixteen
cells. The values of y at orientations inside each cell can
be deduced, roughly, by interpolation from the values on
its three walls.

From the precessional motion of L in this cell diagram,
one can deduce directly the evolution of the polarization
phase y. Here are a few examples: If the precessional
motion of I encloses the intersection line between a dark

part of that law, we obtain the expression for the sig-
nal measured by our x' detector [with its first arm along
—(x + y) and second along 2 (—x + y)]:

h„=—h+ sin 2' + h
&&

cos 2Q . (A6b)

In these equations, k+ and h„arethe gravitational-wave
fields (2) defined with respect to the binary's principal+
and principalx axes. By inserting Eqs. (A5) and L . N

—L, into the amplitude and phase form (7) of the
measured signals, we obtain the following expressions for
the precession-induced modulation of the amplitude and
phase:
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Wp
Detector

-::leg

K

It is important to keep in mind that the total phase
of the signal measured by the detector is not p, but
rather y+ b4, and that b4, like p, can grow secularly
with each precession. For simple precession, that growth
is embodied in Eq. (65) which, stated in words, says:
For simple precession of L with opening angle Al. , if
the precession cone encloses the direction N to the bi-
nary, then b4 changes secularly with each precession by
Ab@ = —2xcos AL„ if the precession cone does not en-
close N, then AbC = 2x(l —cos Al. ) if cos Al, ) 0 and
Ab@ = 2z. (—I —cos Al, ) if cos AL, ( 0.

FIG. 23. The cell diagram, which exhibits the polarization
phase y of a detector's gravitational-wave signal as a func-
tion of the relative orientation of the detector's arms and the
binary's orbital angular momentum vector L.

wall and a light one, then y will grow secularly, gaining
or losing 2' with each precessional period (depending
on the direction of precession). The &p„ofFig. 7 is an
example of this. If the precessional motion almost but
not quite encloses such a light-dark intersection, then p
will evolve like the dotted modification of Fig. 7. If the
precession encloses the vertical direction, where two light
and two dark walls intersect, then ia will change secularly
by +4m with each precessional period. If the precession
encloses an intersection of two dark walls, then p will
oscillate up and down around zero, with two oscillations
per precession period. The p+ of Fig. 7 is an example of
this in which the precession is barely encompassing the
dark-wall intersection, so one of the two oscillations is
tiny while the other is large.

B. Detectors not orthogonal to the propagation
direction

In the last three sections we required that the detector
be orthogonal to the waves' propagation direction. By
doing so, we guaranteed that each of the two arms experi-
enced precisely the same linear combination of principal+
and principalx modes, and the net signal was just twice
that for either arm by itself. If, instead, the detector is
inclined to the propagation direction (i.e., if the waves do
not come in from directly overhead or underfoot), then
the signal in each arm is the same as it would feel if it
were projected into the orthogonal plane, and the net
signal is the sum of those from the two legs. The projec-
tion, unfortunately, changes the lengths of the two legs by
amounts that need not be the same and changes the angle
between them so it no longer need be 9G . Therefore, it
is not trivial to deduce, by the diagramatic techniques of
this Appendix, the details of the net signal modulation:
One must construct the equivalent, projected interferom-
eter, then use the diagrams to deduce the signal in each
leg, and then combine the signals.
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