PHYSICAL REVIEW D

VOLUME 31, NUMBER 8

Laws of motion and precession for black holes and other bodies

Kip S. Thorne
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
and Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

James B. Hartle
Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637
and Department of Physics, University of California, Santa Barbara, California 93106
(Received 9 July 1984)

Laws of motion and precession are derived for a Kerr black hole or any other body which is far
from all other sources of gravity (“isolated body”) and has multipole moments that change slowly
with time. Previous work by D’Eath and others has shown that to high accuracy the body moves
along a geodesic of the surrounding spacetime geometry, and Fermi-Walker transports its angular-
momentum vector. This paper derives the largest corrections to the geodesic law of motion and
Fermi-Walker law of transport. These corrections are due to coupling of the body’s angular
momentum and quadrupole moment to the Riemann curvature of the surrounding spacetime. The
resulting laws of motion and precession are identical to those that have been derived previously, by
many researchers, for test bodies with negligible self-gravity. However, the derivation given here is
valid for any isolated body, regardless of the strength of its self-gravity. These laws of motion and
precession can be converted into equations of motion and precession by combining them with an ap-
proximate solution to the Einstein field equations for the surrounding spacetime. As an example,
the conversion is carried out for two gravitationally bound systems of bodies with sizes much less
than their separations. The resulting equations of motion and precession are derived accurately
through post!->-Newtonian order. For the special case of two Kerr black holes orbiting each other,
these equations of motion and precession (which include couplings of the holes’ spins and quadru-
pole moments to spacetime curvature) reduce to equations previously derived by D’Eath. The pre-
cession due to coupling of a black hole’s quadrupole moment to surrounding curvature may be large
enough, if the hole lives at the center of a very dense star cluster, for observational detection by its
effects on extragalactic radio jets. Unless the hole rotates very slowly, this quadrupole-induced pre-
cession is far larger than the spin-down of the hole by tidal distortion (“horizon viscosity”). When
the hole is in orbit around a massive companion, the quadrupole-induced precession is far smaller
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than geodetic precession.

I. INTRODUCTION AND OVERVIEW
A. The problem of motion in general relativity

The problem of how a body moves through spacetime
has long been of central importance in general relativity,
both as an issue of principle and as a foundation for ob-
servational predictions. The equivalence principle guaran-
tees that test bodies of vanishingly small mass move along
geodesics of spacetime, and that if they have vanishingly
small spin angular momentum, they Fermi-Walker trans-
port it with themselves as they move. A body whose
mass, angular momentum, and other multipole moments
are finite but small on scales set by the surrounding space-
time will suffer corrections to this geodesic motion and
Fermi-Walker spin transport, and in realistic situations
those corrections can be observationally important. For
example, they are responsible for the “general precession”
of the Earth’s spin axis [precession of the equinoxes; see,
e.g., Exercise 16.4 of Misner, Thorne, and Wheeler, here-
after referred to as MTW (Ref. 1)]. As another example,
the corrections can cause a precession of the jets emerging
along the spin axis of a supermassive black hole.at the
center of a very dense star cluster (Sec. V of this paper).

While the history of the problem of motion in general
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relativity is a long one (for overviews see Refs. 2—4), the
problem of the motion of a body with strong internal
gravity (black hole or neutron star) has been investigated
only relatively recently: D’Eath® and Kates® have estab-
lished that for a strongly gravitating body, as for a test
particle, if the mass and spin are vanishingly small, then
the motion and transport are geodesic and Fermi-Walker
(see also Manasse, and Demianski and Grishchuk’).
However, the corrections to geodesic motion and Fermi-
Walker transport seem not to have been studied, with
three exceptions: D’Eath® has studied the largest correc-
tions for the special case of a binary black-hole system;
Damour’® has done the same for the motion, but not pre-
cession, of the bodies in any compact binary system; and
Dixon!? (see also Ehlers and Rudolph!!) has developed an
elegant treatment of all the corrections for bodies with
nonsingular, matter interiors (not black holes), but a treat-
ment in which the center-of-mass world line and the mul-
tipole moments are not tied in any as yet known way to
observations that an external observer can make.

The purpose of this paper is to derive the leading
corrections to the laws of geodesic motion and Fermi-
Walker transport for any strongly gravitating body, in a
form that can make contact with external observations
(Secs. II and III), and to then convert those laws into ex-
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plicit equations of motion and precession for the special
case of a system of several bodies with sizes small com-
pared to their separations and relative speeds small com-
pared to the speed of light (Sec. IV). By ‘“equations of
motion and precession” we mean differential equations
for the world line and angular momentum of the body,
complete and ready for solution. By “laws of motion and
precession” we mean general expressions for the rate of
change of the body’s momentum and angular momentum
in terms of a coupling of the body’s multipole moments to
the curvature of the external universe. The distinction be-
tween laws of motion and equations of motion was intro-
duced by Havas and Goldberg!? and will be discussed in
further detail below.

B. Approximation methods used in this paper

From the outset it must be clear that, in dealing with
the problem of motion in a form that makes contact with
external observations, there can be no discussion without
approximation. Already implicit in the description of the
problem is the idea that one can separate spacetime into a
part which represents the body and a part which
represents the spacetime of the external universe. This
can be done approximately if the size of the body is small
compared to the characteristic length scales of the sur-
rounding spacetime (“isolated body”). One would expect,
in the same approximation, to be able to define the mass,
momentum, and angular momentum of the body and to
derive laws of motion for their rates of change. On the
other hand, for a general spacetime with no large differ-
ence of body length scales and external length scales, there
is no possible separation into body plus external universe,
no body energy, momentum, or angular momentum, and
no equations of motion. All one can do is solve the Ein-
stein equations for the fully coupled system of body plus
universe.

The definitions of total mass, momentum, and angular
momentum of a system that resides alone in an asymptoti-
cally flat spacetime have received considerable attention!?
because they are simple and accessible to rigorous
methods. There is no evidence, however, that the real
universe is asymptotically flat and no possibility of mak-
ing observations at infinity even if it were. It is frequently
the case, however, that portions of the spacetime encoun-
tered in nature are characterized by two different length
scales—the “short” length scales of a “body” and the
much longer length scale of the curvature of the “external
universe.” The problem of interest in this case is the ap-
proximate definition of the mass, momentum, and angular
momentum of the body, and the evaluation of approxi-
mate expressions for their rates of change. This problem
will be considered in this paper.

The external gravitational field of a moving and pre-
cessing body may be characterized by multipole mo-
ments'* whose magnitudes depend on two length scales

M =(mass of body) , L =(size of body)>M ; (1.1)

specifically, the magnitudes of the I-pole moments are
<ML ! These multipole moments can vary with time due
to rotation, precession, or internal changes of structure

such as starquakes; but we insist that they vary slowly,

T =(time scale for changes of moments) >>L . (1.2a)

For a Kerr black hole with mass M and dimensionless ro-
tation parameter X =(angular momentum)/M?*<1, L is
approximately M, and T is infinite (except for very slow
precession effects). For a neutron star with a nonaxisym-
metric density distribution, rotating with angular velocity
Q, L ~(radius of star) and T~1/Q.

Each body studied in this paper will be presumed “4so-
lated” in the following sense: It lives in a possibly com-
plex external universe, but its immediate vicinity will be
presumed devoid of matter and nongravitational fields.
The external universe near the body will have a vacuum
Riemann curvature tensor characterized by three length
scales #, .¥, and .7,

2 =(radius of curvature) ,

-Z =(inhomogeneity scale) , (1.3)

7 =(time scale for changes of curvature) ;

and the body is presumed “isolated” in the sense that all
these scales are large compared to the body’s size L,

R>L, L>L,

The three length scales %, ., and .7~ are defined more
precisely in terms of the components of the Riemann cur-
vature tensor of the external universe in the neighborhood
of the isolated body’s world tube. In the local, asymptotic
rest frame of the body, with nearly locally Lorentz coordi-
nates, the Riemann tensor can be split into “electric” and
“magnetic” parts (Ref. 15 and the Appendix of this pa-
per):

I >L . (1.2b)

& =Rjono, Bjx=75€p R0, (1.4a)
where latin indices denote spatial components, the index 0
denotes a temporal component, and €y, is the three-
dimensional, flat-space, spatial Levi-Civita tensor.
(Throughout we shall use the notation and sign conven-
tions of MTW, including setting G=c=1.) In terms of
these two parts of the external curvature, the external
length scales are defined by

1 gjk
?fjk~3§jk~-—g?2 , gjk,i~%jk,i~“? ,
(1.4b)
&
& jko~ B jxo~ yj. ,

where commas denote derivatives. For example, if the
body of interest is in a binary system with another (“exter-
nal”) body of mass M, then . is the separation between
the two bodies, #~(.73/Mj)!/? is the radius of curva-
ture of spacetime at distance .¢" from the other body; and
7 is of order 1/27 times the orbital period,
T ~[.L3/(M +Mg)]1'/%. Typically, as in this case, .Z is
the shortest of the external length scales, . <A and
& <7, and # j; is much smaller than & jk (though we
treat it formally as of the same magnitude). The “isola-
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tion” requirements & >>L, £ >>L, and 7 >>L imply
that, if significantly strong gravitational waves are im-
pinging on the body from the external universe, their re-
duced wavelength A=A/27r~.%~.7 must be large com-
pared to the size of the body.

For an isolated body one can split spacetime up into
three regions: The “body’s neighborhood,” which is a
world tube surrounding it and extending, as measured in
the body’s local asymptotic rest frame, out to some radius
rr>>L; a “buffer region” extending from radius r; to
some larger radius ry << <(# and .77); and the “exter-
nal universe” located outside radius ry;. In the body’s
neighborhood its own gravitational effects dominate, but
in the buffer region and the external universe the gravita-
tional effects of other bodies are important. As Weyl'®
and Einstein and Grommer!’ realized, the vacuum Ein-
stein equations in the buffer region determine the motion
and precession of the body. Modern variants of their
analyses involve separate mathematical treatments of the
external universe and the body’s neighborhood, and a
matching of those treatments in the buffer region
(“method of matched asymptotic expansions,” introduced
into this subject by Manasse and Wheeler® and expounded,
e.g., in Refs: 3—5 and 18, Sec. 20.6 of MTW,! and Sec. II
of this paper).

In our variant of the matching (Secs. II and III) we will
expand the spacetime metric as a function of radius 7 in
the buffer region in several power series: One power
series characterizes the gravitational effects of the body
and thus is an expansion (“body expansion”) in powers of
M/r, L/r, and r/T (strength of gravity, distance from
source, and distance to wave zone), with expansion coeffi-
cients that are the body’s multipole moments and their
time derivatives. Another power series characterizes the
gravitational effects of the external spacetime and thus is
an expansion (“external-universe expansion”) in powers of
r/#, r/.L, and r/7, with expansion coefficients that
are the external Riemann tensor and its derivatives. A
third power series characterizes the gravitational interac-
tions between the body and the external spacetime and
thus is an expansion (“interaction expansion) in powers
of M/r, L /v, and r/T simultaneously with r/%#, r/.Z,
and /7. The inner and outer edges of the buffer region
r; and ro are chosen such that all of the dimensionless ex-
pansion parameters M /v, L /v, v/T, vr/#, vr/.L, and
r /7 are small throughout the buffer region. The interac-
tion expansion can be derived from the body expansion
and external-universe expansion by iterating the Einstein
field equation. From certain portions of the interaction
expansion, which are embodied in certain “conservation-
law” surface integrals, we shall infer the laws of motion
and precession of the body.

Analogous matching techniques have been used previ-
ously to study special cases of the motion and precession
of compact bodies (Refs. 3—9; see Sec. I A above). How-
ever, in this paper we shall aspire to a level of generality
not previously attempted.

C. Summary of the main results of this paper

In this paper we shall derive the largest deviations from
geodesic motion and Fermi-Walker transport for an “iso-

‘ments will be those of Thorne,

lated” black hole (#Z >>L, .¥ >>L, .7 >>L), or any other
isolated body with slowly changing moments (7 >>L),
moving through an arbitrary external spacetime. The
force and torque that produce the deviations from geo-
desic motion and Fermi-Walker transport will arise from
couplings of the body’s multipole moments to the external
spacetime curvature and to the curvature’s spatial gra-
dients. The external curvature will be characterized by
the values of its “electric” and “magnetic” parts & j; and
A j. at the body’s location (or, more precisely, in the
buffer region around the body). Note that if the external
spacetime is nearly Newtonian, its curvature can be ex-
pressed as

=D, By=—73Huj, (1.5)
where ® is the Newtonian potential, H; is the deDonder-
gauge “gravitomagnetic field” H,~=e,-’kg0k, j» and the
parentheses denote symmetrization. The relevant mul-
tipole moments of the body will be its intrinsic angular
momentum .%;, its mass quadrupole moment .# j;, and its
current quadrupole moment % ;. As discussed, e.g., in
Ref. 14, these moments are symmetric, trace-free, spatial
tensors that characterize the body’s external gravitational
field. These moments are defined in the body’s “local,
asymptotic rest frame,” which is a coordinate system in
the buffer region that is as nearly globally inertial and
Lorentz as possible and in which the body is momentarily
at rest. Our conventions for defining the quadrupole mo-
14 which for nearly
Newtonian bodies in Cartesian coordinates reduce to

TF

gk= [fpxjxkd3x}s

b

(1.6)

STF
Sk = {ijekpqxl’pqu%]

Here p is density, v? is velocity, and the superscript STF
means ‘“symmetrize and make trace-free.” For a Kerr
black hole with spin axis in the direction § (with § a unit
spatial vector in the hole’s asymptotic, local rest frame),
the angular momentum and quadrupole moments are (Sec.
XID of Ref. 14)

szZX_S) N fjk=M3X2(% Sjk“sjsk) N yjk=0 .

(1.7)
Here X <1 is the hole’s dimensionless rotation parameter
(usually denoted a /M).

The mass M, momentum P;, and angular momentum
; of the body can be inferred from the body’s metric in
the buffer region. This can be done precisely only up to
the uncertainties introduced by the presence of the exter-
nal universe. We shall show in Sec. IITF that those uncer-
tainties have magnitudes

2

(uncertainty in M)~ % R (1.8a)
2

(uncertainty in P*)~ A;i , (1.8b)
) 3

(uncertainty in )~ M'L (1.8¢)

'@2
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One way to think about these uncertainties is this: Dif-
ferent physicists, motivated by particular applications or
-mathematical convenience, might try to define in different
precise manners the mass, momentum, and angular
momentum of a body in an external universe. If these dif-
ferent definitions are all to agree with the standard defini-
tions in the limit as the external universe becomes flat,
then they will differ from each other by amounts of order
(1.8).

Equations for the rates of change of the momentum
and angular momentum, when expressed in terms of the
multipole moments of the body and the curvature of the
external universe, are the body’s laws of motion and pre-
cession: The derivation of these laws can be given at
several levels of rigor. At the lowest level there is the fol-
lowing simple argument. :

The rates of change of momentum and angular momen-
tum of a body could be evaluated by integrating expres-
sions for the momentum flux and angular momentum
flux over a closed two surface in the buffer region. What

. would be used in these integrations is the external
universe’s buffer-zone gravitational field, which is fully
characterized by its curvature, and the body’s buffer-zone
gravitational field, which is fully characterized by its mul-
tipole moments.'* Now, only the values of the body’s mul-
tipole moments are important for the gravitational field,
not their source. In particular these values carry no infor-
mation as to whether the source is compact or diffuse.
Thus, expressed in terms of the multipole moments and
external curvature, the laws of motion and precession for
a strongly relativistic body must be the same as for a near-
ly Newtonian one with negligible self-gravity. These
weak-gravity laws of motion and precession are well
known and extensively studied, 2! though their usual
derivations are not via the above surface-integral route.

At a higher level of rigor, one can derive the laws of
motion and precession by carrying out in detail the
surface-integral calculation that is only contemplated in
the above argument. We shall do this in Sec. III.

Our surface-integral calculation is surely not endowed
with the ultimate of rigor. We believe that it would be of
interest to give a discussion of the laws of motion and pre-
cession with rigor more nearly like that of current studies
of asymptotically flat spacetimes,'® and at several points
in this paper we will try to indicate routes by which this
might be achieved.

Our surface-integral derivation of the laws of motion
and precession as presented in Sec. III is made conceptual-
ly complicated by its use of expansions in six independent
dimensionless parameters: M /r, L/r, v /T, v /R, vr/.L,
and /7. To build up confidence in the conceptual foun-
dations of our method, we precede these computations of
Sec. III by an analysis restricted to a Kerr black hole (Sec.
ID). In that analysis L~M, T = «, and we formally re-
gard I ~.ZL ~ 2, so there are only two dimensionless ex-
pansion parameters: M /r and r/Z. This simplification
permits us to describe in a simple manner the matched-
asymptotic-expansion conceptual basis for our computa-
tions.

Not surprisingly, in view of the “simple argument”
above, the results of our calculations in Secs. II and III
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are the same as for a body with negligible or weak self-
gravity:'*~2! As measured in its local asymptotic rest

frame, the body’s mass is conserved,
aM ML
—_— <} 1.9
a << 7 (1.9a)

its linear momentum (which is momentarily zero) changes
at the rate

dp/ .
—=—-S%,; 1.9b
a0 a (1.9b)
and its angular momentum changes at the rate
j . .
%: — I B2, SO B . (1.9¢)

We shall call Eq. (1.9b) the “law of motion” and Eq.
(1.9¢) the “law of precession” for the body as it moves
through the external universe. For a Kerr black hole,
with moments given by Egs. (1.7), these laws of motion
and precession reduce to

dp’ j ,

_dt_=_M2x5“gaa1, (1.9b")
) .

df =000, Q%=—_&%MXxsC.  (1.9¢)

The quantity 57 is called the “angular velocity of
torqued precession.”
Note the magnitudes of the time changes (1.9):
aM ML dP/ ML ds7  ML?

e ~

i @’ Ta " @; a2
(1.10)

Comparison with Eqgs. (1.8b) and (1.8¢c) shows that the
change in P’/ need only evolve for a time At ~100L and
the change in #/ for a time At~100M?/L to become
much larger than the uncertainties in the definitions of P/
and #/. In this sense a meaning can be given to the laws
of motion and precession even in the face of uncertainties
in the quantities whose rates of change they describe.

In the law of precession (1.9¢), the first term (coupling
of mass quadrupole to electric-type curvature) will almost
always produce the dominant torque, and always will do
so for a black hole [cf. Egs. (1.7) and (1.9¢')], but oc-
casionally the second term (coupling of current quadru-
pole to magnetic-type curvature) may be comparably
strong.

For an isolated Kerr black hole, as for an isolated, rig-
idly rotating, perfect-fluid body, the spin axis and the
angular-momentum direction always coincide. Conse-
quently, at the level of precision of Eq. (1.9¢’) for
d .7 /dt, in which the distortion of the black hole by the
external universe is unimportant, the angular velocity of
precession Q1 of #7 is also the angular velocity of pre-
cession of the spin axis. Thus, a black hole does not nu-
tate at this leading order of accuracy. It would be in-
teresting to know whether nutation occurs at higher or-
ders.

The laws of motion and precession [Egs. (1.9b) and
(1.9¢)] can be rewritten in frame-independent geometric




language by regarding the body’s multipole moments and
the external curvatures as four-tensors orthogonal to the
body’s four-momentum:

P"|ﬁuB=—¢@“Byﬁ, (1.11a)
fa|ﬂuﬂ= —eﬂaﬂr/m?fsyu"—%euaﬂ,,fﬂa.%a"u" .
(1.11b)

Here all quantities are vectors and tensors in the external
spacetime: P¢ is the body’s four-momentum; u*=P%*/M
is its four-velocity; the vertical bar denotes a covariant
derivative with respect to the metric of the external space-
time; €,,p, is the Levi- Civita tensor; and %4, #ug, L ap
& op, and A ,g are the quantities .7}, /Jk, & x> and % ji
viewed as four-tensors orthogonal to # ¢, which reside on
the body’s world line in the external spacetime.

If one wishes to integrate these equations to determine
the detailed motion and precession of the body, one must
first augment them by two things: (i) “constitutive rela-
tions” for the body which determine .#,5 and %,z in
terms of P and ¥ [for a Kerr black hole the constitu-
tive relations are Egs. (1.7), and for a rigidly but slowly
rotating body they are discussed by Thorne and Giirsel??];
and (ii) a description of the external universe which is suf-
ficiently detailed to permit location of the body on a
specific world line and to permit computation of the cur-
vature &,p, # o5 along that world line. When so aug-
mented, the “laws of motion” (1.11) become concrete ““dif-
ferential equations of motion” for the body’s world line.
In some cases the external universe will be insensitive to
gravitational “back-action” forces from the body, and as a
result the computation of & ,g and # ,g will be straight-
forward; an example is an external universe consisting of
a single very massive object (Mg >>M) about which the
body of interest orbits (see Secs. IV and V). As we shall
see at the end of Sec. IV B, in this test-body case the ef-
fects of coupling to external curvature are of the same
negligible magnitude as the effects of back action. In oth-
er cases the body’s gravity may strongly influence the
external universe, thus requiring that the evolution of the
external universe and the motion and precession of the
body be solved as a coupled problem by self-consistent
methods. Section IV will present an example of this: the
motions and precessions of a system of several or many
bodies all of comparable mass, but with sizes L small
compared to their separations ., and velocities small
compared to the velocity of light, computed to “post!->-
Newtonian order” [fractional corrections ~(M /.%)3/?
beyond Newtonian]. Not surprisingly, although the
bodies may be black holes or neutron stars, the equations
of motion and precession for the system have the standard
form that has been derived previously for bodies with
weak internal gravity.!~2! When specialized to a black-
hole binary system these equations of motion and preces-
sion reduce to those of D’Eath.?

The forces and torques in the laws of motion (1.9) are
just the leading terms in a power-series expansion in inter-
nal length scales (M and L) over external length scales
(#, £, and .7), and also in M/T and L/T. The
higher-order forces and torques are all small compared to
those of Eqgs. (1.9) for the case of a black hole or a rota-
tionally distorted star interacting with a generic external
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gravitational field. There are situations, however, when
the higher-order contributions to the laws of motion be-
come important. We shall give a few examples.

For a body that is surrounded by purely electric-type
gravity (Z,,=0) or a body that is rotating very slowly
(&, =0) and is distorted by internal stresses (# 4, 50), the
force (1.9b), which is of order ML /Z2? in our expansion,
may be strongly suppressed compared to the force

dpJ ML?

e lgi,ste
b L

ar (1.12)
(where & ;5 is defined below). We will not derive this
force in this paper, but, as Zhang?® shows, it can be de-
rived by a higher-order iteration of the techniques of Sec.
III or, alternatively, by Newtonian considerations. [The
“simple argument” following Egs. (1.8) guarantees that
this force will have precisely the same form as in
Newtonian theory even if the body is strongly relativistic.]
This force arises from a coupling of the body’s mass
quadrupole moment .#,, to the ‘“electric-type octupole
moment” & j,, of the external Riemann curvature. That
octupole moment is equal to the fully symmetrized, “elec-
tric” part of the gradient of the external Riemann tensor
[Eq. (A9b) of the Appendix]

& ik =(Riojo  k)°=F(Riojo|k +Rjoko| i +Rkoio| ;) » (1.13a)

and in Newtonian theory it is given by

P
Ein=—"—""7. (1.13b
kT axidxiaxk :
At the level of accuracy of our calculations,

O(ML /7?), the body’s total mass-energy M is conserved.
However, as we shall show in Sec. IIIE [Eq. (3.14a)], if
we were to carry our calculations to higher accuracy for a
body with T << %#%*/M or T << R#*/M, we would find
that the largest nonzero contributions to dM /dt have the
forms and magnitudes

dM d.sik d?fk d 7k
en gg ik
ar M dt —— -+ +U3B a7
yjk Jjk
+L4 ——dt
2 2
ML ML (1.14)

T T
where the p; are constants of order unity. If the body’s
moments .# 5 and S are constant while & j and
oscillate on a time scale .77, the mass M will oscillate with
an amplitude of order the uncertainties (1.8a) in its own
definition, AM ~ML?/77*. The only way the changes
(1.14) can grow large enough to exceed the uncertainties
ML?/2? in the definition of M is if the body’s moments
and the external curvature oscillate in approximate reso-
nance with each other, i.e., if .7 ~7. For example, the
body’s mass quadrupole moment < i might oscillate
sinusoidally due to its rotation,?? and the curvature & j
might oscillate at roughly the same frequency due to a
passing gravitational wave (this is the case for a “mechan-
ical heterodyne detector” of gravitational waves®*). Since
Eq. (1.14) is physically significant only when .7 ~T and
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when allowed to build up for a time Az >>T ~.7, only its
average, (dM /dt), over times At>>T ~.7 has signifi-
cance. Zhang?® has computed explicitly the coefficients
U1 —u, and u3—p4 appearing in that time average and has
shown that they are the same as one would compute for a
weakly gravitating body using Newtonian theory (for the
&7 terms) and linearized theory (for both the #7* terms
and the #/* terms):

dM 1 dsik\ 2 d.7*
< dt >—_2<g"" dt >— 3<ggﬂ‘ dt >

If the body’s quadrupole and higher-order moments are
varying due to pulsation or nonaxisymmetric rotation,
those variations will produce gravitational waves, and ra-
diation reaction will induce time changes of the body’s
mass, momentum, and angular momentum [Egs. (4.16),
(4.20"), and (4.23') of Ref. 14, with signs reversed]. Those
changes can be derived by the same technique of surface
integrals in the buffer region as we use here to derive the
laws of motion and precession (1.9) (Sec. 3.3.2 of Ref. 25).
However, since this paper deals with coupling to external
curvature, we shall ignore radiation reaction throughout
it.

The remainder of this paper contains our two deriva-
tions of the laws of motion and precession (1.9) (Sec. II
for a Kerr black hole, Sec. III for a general isolated body),
our conversion of those laws of motion and precession
into equations of motion and precession for a several-body
system (Sec. IV), and some concluding remarks about as-
trophysical applications (Sec. V).

(1.15)

II. DERIVATION OF LAWS OF MOTION
AND PRECESSION FOR A KERR BLACK HOLE

The work of D’Eath,>® Kates,>!® and Damour* has
shown that the method of matched asymptotic expansions
is a powerful tool for deriving laws of motion and equa-
tions of motion for strongly relativistic systems such as
black holes. In this section we shall review this method
and use it to derive the corrections to geodesic motion and
Fermi-Walker spin transport for a rotating black hole.

A. The spacetime of a black hole in an external universe

In a frame where it is momentarily at rest an isolated
Kerr black hole may be characterized by a single dimen-
sional parameter, its mass M, and by its dimensionless
spin X=a/M and its spin direction s/. A spacetime
which could be described as a black hole moving in an
external universe should be characterized by two sets of
length scales: First, by the scale of the black hole M, later
to be identified with its mass; and second, by length scales
A =(radius of curvature), .& =(spatial inhomogeneity
scale), 7 =(time scale for changes of curvature) charac-
terizing the external universe. To simplify the discussion,
we shall regard #, ., and 7 as formally having the
same magnitude, so for asymptotic-expansion purposes
there is only one  external length scale,
R=min(#,.L, 7).

Can we identify a mass, momentum, and angular
momentum for the black hole in such a spacetime? Mass,
momentum, and angular momentum are quantities which

can be precisely associated only with a system that resides
alone in an asymptotically flat spacetime, and this is not
the case for the black hole under discussion. When M is
much smaller than 2, however, we can identify a region
which is simultaneously far inside the external matter in
the sense of having a scale much smaller than % and far
outside the black hole in the sense of being at distances
from it much larger than its scale M. This is the buffer
region described in the Introduction, and it plays the role
of an approximate asymptotically flat region for the body.
In it we expect to be able to define approximate notions of
mass, momentum, and angular momentum which become
more and more precise as M becomes small compared to
Z. We shall now show how to do this. For economy we
shall continue to denote the spacetime’s black hole param-
eters by M, X, and s/, understanding that though they are
precisely defined, they represent mass, angular momen-
tum, and spin direction only in the approximate sense
described above.

Consider the family of solutions to Einstein’s equation,
generated by making M smaller and smaller and keeping
Z# fixed. As M becomes much smaller than % we can
identify a region much smaller in scale than & in which
the spacetime metric can be expanded as

g:g[°]+%“1g[1]+@“2g[2]+ -, (2.1)

where g[0] is the Kerr metric and the succeeding terms
represent the corrections due to the external matter. As

we shall see below, the #Z ~'gl!l term vanishes. Numbers
for the mass M, momentum P’, and angular momentum
% of the black hole can be extracted from g(°! by fitting
it with a Kerr geometry having these parameters. This
procedure does not yield a precise identification of a mass,
momentum, and angular momentum for the hole because
the expansion (2.1) is not unique: One can move pieces
out of the 2 ~%g[? part of the metric and into g!°l, there-
by changing the M, P‘, and .#* attributed to the hole.
This implies that there are uncertainties of magnitude
AM ~M?3/R?*, AP'~M?*/%#?, and AFS ~M*/%#* in the
definitions of the body’s mass, momentum, and angular
momentum (Sec. II E below).

The procedure for extracting the mass, momentum, and
angular momentum of the hole from the metric can be
made more definite by considering in the buffer region the
surface integrals of a pseudotensor “potential” whose
values asymptotically give these quantities for an asymp-
totically flat spacetime:

M(n=016m)""' ¢ H* 43S, , (2.22)
Pi(r)=(16m)~1 P H* 43S, , (2.2b)
Fln=016m)~1 P e (x/H O 4 HI%)42s, (2.2¢)

[cf. Egs. (20.6) and (20.9) of MTW]. The surface integrals
are over any closed two-surface in the buffer region. For
definiteness we have taken these to be surfaces of constant
r=[(x1)2+(x2)2+(x3)?]'”? in the approximately Lorentz
coordinate system which can be introduced in the hole’s
local asymptotic rest frame. In Egs. (2.2) €y is the
three-dimensional, flat-space Levi-Civita symbol [no fac-
tor of (—g)!/? integrations performed as though in
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asymptotically flat spacetime], d 2SJ- is the flat-space sur-
face element, and H*f"® is the pseudotensor “potential.”
Expression (2.2a) normally gives the time component P°
of the four-momentum, but since the integration is per-
formed in the body’s local asymptotic rest frame where P’
is zero (aside from tiny effects of nongeodesic motion), P°
reduces to the body’s mass M.

Were we to evaluate Egs. (2.2) using the Kerr metric we
would obtain well-defined functions of r, M%(z), PIO¥(y),
and #1%%(r), which asymptotically would become the
mass M, momentum P’, and angular momentum % of
the Kerr geometry. However, M, P’, and .%* could equal-
ly well be read off from the behavior of these functions
for smaller r.

Consider the integrals (2.2) for the family of spacetimes
parametrized by a decreasing M and fixed #. If the
range of r at which the integrals are evaluated shrinks to
zero at a slower rate than M (say, as M€, O<e< 1), then
the surface is increasingly far from the black hole on its
scale but increasingly small on the external-universe scale.
The integrals in Eq. (2.2) become increasingly well defined
in the sense of an asymptotic expansion in M. To the ex-
tent that these integrations, carried out with the full
metric, coincide in this range with M), plOY(y), and
Z0k(#) one can extract'a mass M, momentum P’, and
angular momentum % for the black hole. To the extent
that the corrections to g[° in Eq. (2.1) make the integrals
noncoincident with the Kerr forms there will be an impre-
cision in the definitions of these quantities. For further
details see Sec. ITE below.

B. Laws of motion and precession
from matched asymptotic expansion

The laws of motion and precession for the black hole in
the external universe follow from expressions for the rates
of change of its mass, momentum, and angular momen-
tum. The rates of change of the momentum and angular
momentum of the black hole are contained in the terms
gl g1 . in (2.1). They could be extracted directly
from a calculation of these terms (see Sec. III for further
discussion) but equivalently and more conveniently are
calculated from the expressions for the rates of change of
the surface integrals (2.2). These can be expressed as sur-
face integrals of a symmetric energy-momentum pseu-
dotensor in the standard way,

M(r)=— ¢ t%%s; , (2.3a)
Pir)=— ¢ tid’s; (2.3b)
Yi(r)=— ¢ eijkxjtk’szl . (2.3¢)

Here tY is the pseudotensor; the dots over M, P’, and %*
denote time derivatives, M=dM /dt; and the surface in-
tegrals again are over the closed two-surface of constant »
in the buffer region. These surface integrals are derived
as mathematical identities satisfied by the M(r), Pir),
F(r) of Egs. (2.2) in Sec. 20.5 of MTW and in Sec. 96 of
Landau and Lifshitz (LL),2® but those derivations use
Gauss’s theorem in a form valid only if the body’s interior
has Euclidean topology. Although one might fear that

this topological constraint invalidates the derivation when
the body is a black hole, it does not do so. As discussed
on page 42 of Ref. 25, the derivation and the final formu-
las (2.3) are valid for black holes as well as for normal
bodies. When performing concrete calculations in this pa-
per we shall use for t#¥ the Landau-Lifshitz pseudotensor

t*=(—g)t{] = [Eq. (20.22) of MTW]

= [Eq. (96.9) of LL] . (2.3d)

If in the family of spacetimes characterized by a de-
creasing M and fixed £, the surface over which the in-
tegrations (2.3) are performed shrinks as described above
for the integrals (2.2) (i.e., r « M€, 0 <€ < 1), then these in-
tegrals become increasingly precisely defined. By evaluat-
ing the dominant term of an expansion of these integrals
in powers of M and expressing the result in terms of the
parameters characterizing the black hole and the local
curvature of the external universe, we acquire the laws of
motion and precession of the hole.

It is not difficult to guess from general considerations
the form that the laws of motion and precession will take.
The ingredients from which the right-hand sides of in-
tegrals like (2.2) and (2.3) are composed are the parame-
ters M, X, and s’ of the Kerr black hole; the flat, spatial
Levi-Civita tensor €;; and the metric g'9 of the external
spacetime [which we shall discuss in Eq. (2.5) below].
The results must not depend on the choice of coordinates
for g and thus can depend on it only through its
Riemann tensor &; and #;; in the vacuum, buffer re-
gion. The results must be dimensionally correct and
transform correctly under time reversal (for which
M—+M, PPs — P! #i_, -7 S;—> —Si, gij_’ + gij:
B j——RBj, and €, — +€;), under spatial reflections
(for which, viewed “actively” rather than “passively,”
M—4+M, PP 4P Fis i si s i gij—>+ ?f,-,-,
Bij——R;, and €, — —€;) and under spatial rota-
tions (which requires correct balancing of indices). The
results could also depend on how the value of » at which
the integrals (2.2) and (2.3) are evaluated shrinks to zero.
We have taken r to go as M€, O<e< 1. For the laws of
motion at leading order in M to make sense, they must be
independent of € and this will indeed be shown to be the
case. We can therefore guess the results by using the lim-
iting value e=1. The above requirements fix the form of
the leading-order expressions for M, P i and Fias M is
decreased and X and s’ remain fixed:

M=p(X)M3&;s's/ (2.4a)
Pl=a(X)M*%B';s, (2.4b)
,}" '=B(X )M3€ijk Efklsjsl . (2.4¢)

Here u, a, and 3 are dimensionless functions of X which
are independent of the details of the external universe be-
cause there is no way for them to depend on those details.
They are properties of Kerr black holes. To complete a
derivation of the laws of motion and precession it remains
only to compute these coefficients. To ensure their mean-
ing we must also show that M, P!, and % are defined to
a precision which is higher order in M than the leading
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terms in Eq. (2.4). We shall compute a and 3 below, but
we shall not compute u for two reasons: (i) 1 is not im-
portant for the hole’s motion or precession, and (ii) be-
cause Eq. (2.4a) involves &; it entails for its precise
evaluation higher-order calculations than (2.4b) and
(2.4c).”” We shall investigate questions of precision in
Sec. I1E below.

To derive the laws of motion and precession (2.4b) and
(2.4c) (and thence the functions & and ) from the surface
integrals (2.3) requires knowing the pseudotensor ¢“ to or-
der M3/#? — and this, in turn, requires knowing the
first three terms g[o], g“], and g[Z] in the expansion (2.1)
of the distorted Kerr metric. Fortunately, we shall not
need the full details of those terms. All we shall need is a
few properties of them, which can be established from a
discussion of how they might be computed in principle.
This we now give.

One cannot simply solve Einstein’s equation for the
successive terms in the expansion (2.1): The solution is
determined in part by the boundary conditions at infinity
and the expansion (2.1) is not valid there. To deal with
this a second expansion is introduced: an expansion of the
spacetime metric in powers of the mass of the black hole
keeping fixed X, s;, and the parameters of the external
universe. We write

g=g‘°)+Mg“)+M2g‘2)+ e (2.5)

Roughly speaking, the metric g describes the external
spacetime in the absence of the black hole, and the
succeeding terms describe the corrections due to the black
hole’s presence. A key defining characteristic of g(® is
that it is smooth at the black hole’s location. However,
just as there is ambiguity in the choice of the unperturbed
Kerr metric [Kerr-type terms of order % ~%gl?] can be
moved into the g% of Eq. (2.1) thereby changing the M,
P, and ¥ attributed to the hole], so also there is ambi-

guity in the choice of the external metric g'?: Terms of
order MgV 4+ M?® 4 - . | which vary smoothly with r
J
- & M & M2
g = 7 ; =
M M?
0 & — & —_—
& R r#
2 2
g L & M g X
.@3 R , .@2
& r g & Mr3 & M 3r
‘ # # #
& o . .
(0) Mg(l) MZg(Z)

Here, following the notation of Penrose,?® “&” is to be
read “and a term of the form. .. .” In principle any given
term could be multiplied by a logarithmic » dependence,?’
but.this does not happen in practice at the orders we shall
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as r—0, can be moved into g'”, thereby changing the
external metric and its curvatures &;, % ;; by small frac-
tional amounts. When one converts the laws of motion
into equations of motion for a specific situation, this free-
dom to make small changes in g'” can be a powerful aid
in optimizing the accuracy of the resulting equations; see
Sec. IV for an example.

The expansion (2.5) may well not be valid arbitrarily
close to the black hole where the curvatures it produces
become strong. However, it will be valid outside a dis-
tance from the black hole of order its mass, and in partic-
ular at infinity.

The assumption of an isolated black hole, specifically
the requirement M /% << 1, implies that the expansions
(2.1) and (2.5) have a common region of validity which in-
cludes the buffer region. To solve Einstein’s equation for
a black hole in an external universe, one can take a family
of solutions of the form (2.1) satisfying correct boundary
conditions at the black hole and a family of solutions of
the form (2.5) satisfying correct boundary conditions at
infinity, and match the two families in the region of com-
mon validity. The assumption that this procedure of
matched asymptotic expansions can be carried out will be
enough to determine the laws of motion.

Imagine that one has obtained by the method of
matched asymptotic expansions a family of black-hole-
in-external-universe solutions parametrized by M. As al-
ready described, the laws of motion are obtained by
evaluating the surface integrals in Egs. (2.3b) and (2.3c) at
a radius r <« M€ O<e<1 as M shrinks. To study the in-
tegrands of these expressions at these small values of », we
expand the spacetime metric simultaneously in M and
! in the buffer region where both expansions (2.1) and
(2.5) are valid. This will also be an expansion in powers
of r since M, #, and r are the only dimensional quanti-
ties. Writing out only the powers of the dimensional
quantities involved, omitting the coefficients, and denot-
ing the Minkowski metric by 7, the expansion has the fol-
lowing structure:

Arfsi & gl
;—A.;—az & Rl
—Ag{—z & 3l
M3g® (2.6)

encounter. Successive rows in this tableau correspond to
g0l gl gl2] etc. while successive columns correspond
to g(®, g1 g2 etc. The first row is thus the expansion
of the Kerr geometry in powers of M while the first



31 LAWS OF MOTION AND PRECESSION FOR BLACK HOLES ... 1823

column is the expansion of the external spacetime in in-
verse powers of #Z. The assumption of the existence of
matched asymptotic expansions dictates the powers of M
and % which occur in Eq. (2.6). For example, there are
no terms of the form M2 /r? because these do not occur
in (2.1) and none of the form r2/M% because these do
not occur in (2.5). The powers of r follow from dimen-
sional analysis once the powers of M and # are specified.
Two assumptions about coordinates have been used in Eq.
(2.6). The first arises because the Kerr metric becomes
asymptotically flat at large » and the metric of the exter-
nal universe without black hole becomes locally flat at
small r. These limits coincide in the Minkowski term 7
of Eq. (2.6). Consistency requires that both the Kerr
metric gl and the external universe metric g'© be ex-
pressed in coordinates for which the metric functions
coincide in these limits. We have chosen these to be rec-
tangular Lorentz coordinates (¢,x‘). This is the only re-
striction imposed on the coordinates by the method of
matched asymptotic expansions so that there is consider-
able gauge freedom left. We in particular are free to use
any coordinates to express the Kerr geometry as long as it
is asymptotically Lorentz and are free to use any coordi-
nates for the metric of the external universe provided it is
Lorentz at small ». We shall exploit the first possibility in
what follows but more immediately we use the second to
eliminate any term in the metric g% of the external
universe which is linear in r. Physically this corresponds
to choosing the coordinates to be nonrotating and nonac-
celerating relative to the local inertial frames of the exter-
nal universe. (See the Appendix and Sec. III for further
discussion.) :

The absence of terms of order ! in the metric g'© of
the external universe means that all terms of this order
vanish, i.e., #'gl!!=0. To see this imagine iterating
Einstein’s equation to calculate the elements of the tableau
in (2.6) starting from the known expansions of the Kerr
metric g!° and external-universe metric g'®. A given or-
der in M and # of the expansion of Einstein’s equation
resulting from the metric expansion (2.6) will be a linear
equation for the unknown metric perturbation of that or-
der driven by a nonlinear combination of known lower-
order terms. (See Sec. III for a more explicit discussion.)
If there are no terms of order Z~! in the external-
universe metric, there are no driving terms for any metric
perturbation of this order. Since the boundary conditions
at small and large 7 also do not require ! terms, they
vanish identically. Thus, % ~'g[!) and the second row of
(2.6) are zero.

The tableau (2.6) permits us to understand more clearly
the origin of the uncertainties in the mass, momentum,
and angular momentum of our black hole: The M?3/r22?
term in the tableau will contain a contribution of the form
&I /r~M>& s's/r to goo. We are free to move this
contribution out of the M*/r? term of the tableau and
into the M /r term, if we wish, thereby changing the mass
we attribute to the hole by an amount AM ~M?*/%2? [Eq.
(1.8a)]. Such a move does not change at all the sum of all
the terms in the tableau. Similar rearrangements of other
terms will produce changes of magnitudes (1.8b) and
(1.8c) in the P’ and %! we attribute to the hole. And by

absorbing the Mr2/%#* term into r2/Z* we can change
¢'? by a fractional amount of order M /%, thereby help-
ing to optimize the accuracy of the equations of motion
that follow from our laws of motion (Sec. IV).

We shall now identify the terms in the tableau (2.6)
which contribute to the surface integrals for P? and ¢
[Egs. (2.3)] as M shrinks to zero and the radius of the in-
tegration surface shrinks as M€, O<e< 1. For definite-
ness consider the Landau-Lifshitz pseudotensor
ti=(—g)t¥,, displayed in Eq. (20.22) of MTW. (—g)t¥;
depends only on the metric and its first derivatives and is
quadratic in these first derivatives. From this we see that,
for small M, products of coefficients in (2.6) which to-
gether vary as #° contribute to P?and as 7 ~! to #*. The
combinations of interest are those of lowest order in M as
M shrinks to zero.

C. Derivation of the law of motion, P’

A little study of the tableau (2.6) convinces one of the
following: The only terms in ¢” which contribute to the
surface integral for P’ evaluated at a radius » ~M¢€ for
small M are those constructed from products of first
derivatives of the part of the Kerr metric proportional to
M? with first derivatives of the part of the external-
universe metric proportional to %~ i.e., terms of the
form M?/r*xr?/#% Terms of the form M /rXr%/#?,
which have the correct powers of M, #, and r will not
contribute to P’ at order M? because the general form
(2.4b) of the final answer involves the spin direction s’
which is absent from the metric at order M. Terms of the
form M /r X r?/Z#*, which might be thought to dominate
the M? result as 7 « M€ goes to zero, vanish because the
final answer involves the spin direction s’ which is absent
from the metric at order M. Put differently, the M /r
part of the Kerr geometry is spherically symmetric so the
M /rXr*/%* terms give no preferred direction for P’ to
point. Put yet differently, the external-universe geometry
at order 1/%? transforms as a quadrupole under rota-
tions; a black-hole vector or higher multipole is needed to
couple to this external quadrupole to give a vectorial P,
but vectors (s') and higher multipoles (e.g., s's’) enter the
Kerr geometry only at order M? and higher, not at order
M. For any of these same three reasons, terms of the
form M /r XM /rXr%/Z#? also give a vanishing contribu-
tion to P;.

From a computational point of view the important
consequence of the above argument is that one can com-
pute P’ without first solving Einstein’s equation for the
external universe’s Mr/#? deformations of the Kerr
metric. The unperturbed Kerr M?/r? terms and the un-
perturbed external-universe r2/R?* terms alone, inserted
in Eq. (2.3), suffice to give the leading-order correction to
geodesic motion. To carry out this calculation efficiently
we shall exploit the freedom in the choice of gauge
remaining after the modest constraints imposed by the
form of the expansion (2.6). For the external universe we
use the deDonder gauge discussed in the Appendix, in
which the metric has the expansion
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g =—1—&yx'xit -, (2.7a)
g0 =—FeuBixix'+ -, (2.7b)
gt(jO)—Su(l—gka kxly4 - (2.7¢)
For the Kerr geometry we use ‘“rectangular” Boyer-

Lindquist coordinates (t,x!,x%,x3), which are related to
the usual “polar” ones (t,7,60,¢) [MTW Eq. (33.2)] by the
usual flat-space transformation between polar and rec-
tangular coordmates % In these coordinates the order
M?/r? part of goo vanishes. The order M?2/r? part of
gl i [91 is even in s’ and therefore cannot contribute to a final
result of the form (2.4b). The only relevant part of the
Kerr metric is therefore

ghil=— 2.8)

where n' is the unit radial vector x‘/r.
With these elaborate preparations a straightforward cal-
culation of the M?/r?xr?/%#? contribution to (2.3b)

Pi=_3.577, (2.9)
which is expression (2.4b) with a(X)=X and is also ex-
pression (1.9b).

D. Derivation of the law of precession, % ‘

We next turn to the evaluation of the surface integral
for ¥ A little study of the tableau (2.6) convinces one
that if one is not careful one will have to solve Einstein’s
equation for the Mr/%#* corrections to the Kerr-plus-
external-universe metric in order to evaluate the pseu-
dotensor and thence % to order M3. For example, there
are products of the form M /rXM/rXMr/#* and
M?/r?x Mr /#?* which are of the correct order in M, £,
and r to contribute in the evaluation of (2.3c). Further,
there are terms like M /rxr2/#* and M?/r’xr?/%#*
which would dominate the order-M?> result if » shrinks as
ME. At order M the Kerr metric contains no information
on the orientation of the black hole so that, similarly to
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the argument for linear momentum, products involving
coefficients of only this order or less, such as
M /r XM /rXMr/R? cannot contribute to the final vec-
tor . Ina general gauge the M?/r? terms in the Kerr
metric will contain both vector terms (in the go; com-
ponents) and quadrupole terms (in the gy and g;; com-
ponents). This is the case, for example, in the “rectangu-
lar” Boyer-Lindquist coordinates described above.?%3!
Parity considerations rule out any contribution of the vec-
tor M?/r? parts to the final result (they are odd under
parity, the quadrupole lowest-order external-universe
metric is even, and the result is even). There remain, how-
ever, the quadrupole M?/r? terms which can couple to
the quadrupole Mr /222 terms to enter into the final result
for .¥ . Thus, in a general gauge, and in rectangular
Boyer-Lindquist coordinates in particular, it is necessary
to solve Einstein’s equation for the Mr /#? corrections in
(2.6) in order to derive the lowest-order-in-M law of pre-
cession of a black hole.

To leading order in M the precession of the black hole
arises from a coupling between the hole’s intrinsic quadru-
pole moment and the curvature of the external geometry,
as Eq. (2.4c) shows. The physical information contained
in the Mr/Z2? term in the metric is not this, but rather
the lowest-order effect of the black hole on the metric of
the external universe. This has nothing physically to do
with the precession. One might reasonably expect, there-
fore, to be able to avoid a laborious iteration of Einstein’ s
equation to obtain the Mr/Z? term, when computing f
at the lowest order in M. One can. The occurrence of
quadrupole terms in the M?/r? part of the Kerr metric is
not a gauge-invariant result. There exist gauges in which
they are absent. These are the ACMC-1 [“asymptotically
Cartesian and mass centered to order (1/r)'*!”] coordi-
nates of Ref. 14. A derivation of the equation of preces-
sion which starts with the Kerr metric expressed in an
ACMC-1 coordinate system will give zero contribution
from the M?/r?> X Mr/%#* terms and thus will not require
an iteration of Einstein’s equation. Perhaps even more
importantly there will be no contributions to %' from
terms like M?2/r?xr?/9#* which would dominate if r
shrinks as M€. The leading-order equation of motion is
of order M3.

In an ACMC-1 coordinate system the Kerr metric takes
the form?3?

2M  3MXA(H-E)? M>
g&))]=__1+_r____.3—+0 =, (2.10a)
r r
4
50] 2MX( X H);+0 M” ]’ (2.10b)
rt
2 M3
g,[JO]—S,J—!——‘z%l—n,nj+—A;45—[X25,_,+(4—2X2)n,n]]+87n,n1
3X M4
+ {2[1—(S-1d) ]8,]+[ 6—5(3-1)*In;n; —2s;5;+8(3 - Wnsp} 40 el (2.10¢)
292 4
(—g[01)1/2=1+; MX" o [M ] _ (2.10d)
¥
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[The complicated M3/r® term in g;; does not actually
enter the calculation when the deDonder gauge (2.7) is
used for g'*.] By adding Egs. (2.10) for the Kerr metric
to Egs. (2.7) for the external-universe metric, calculating
terms in (—g)t¥; of order M?3/r3(quadrupole)
X 1/%*(quadrupole), and evaluating the surface integral
in (2.3¢), one arrives at the following result for the equa-
tion of black-hole precession to lowest nonvanishing order
in M:

S = —M3)(26ijk glejSl .

This is expression (2.4c) with B(X) = —X? and is also ex-
pression (1.9¢’)

(2.11)

E. Uncertainties in the definitions of mass, momentum,
and angular momentum

The order of magnitude of the uncertainties in the defi-
nitions of the mass M, momentum P/, and angular
momentum %7 of the black hole in an external universe
may be estimated by either of two procedures. One may
study the tableau (2.6) to see how these quantities, as de-
fined by g9 can be altered by moving into gl® terms
from #~%gl2l. Alternatively, and analogously to the
derivation of the laws of motion, one can compute the
changes in the surface integrals (2.2) for M, P/, and %/
caused by including % ~2g[?] terms in the computation of
their integrands.

The dependence of the uncertainties in M, P/, and .7
on the curvature of the geometry of the external universe
and on the spin direction of the black hole can be deter-
mined, as in Sec. IIB, from transformation properties
under rotations, parity, and time reversal. The depen-

dence on M and r can be found from dimensional argu- -

ments. The results of such an analysis are

(uncertainty in M)~M3& ;s's/ (2.12a)
(uncertainty in PY)~M3€'; B/ s*s', (2.12b)
(uncertainty in ') ~M?>T€&" ;s o (2.12¢)

The uncertainty in .’ depends on €, but € can be pushed
as close to unity as one likes. The rate of change of the
uncertainty (2.12a) in M, due to time changing &;, is of
the same order as the rate of change of M itself, Eq.
(2.4a). However, the rates of change of the uncertainties
(2.12b) and (2.12¢) in P’ and %" are of higher order than
the curvature-induced changes (2.4b) and (2.4c) in P’ and
%" themselves. Because the rates of change of the uncer-
tainties in the definitions are smaller than those deduced
from the leading-order laws of motion and precession,
these leading-order equations have a definite meaning.

F. Comments on the derivations

The above analysis shows that the methods of matched
asymptotic expansions provide an efficient tool for deriv-
ing the leading-order corrections to geodesic motion [Eq.
(2.9)] and Fermi-Walker spin transport [Eq. (2.11)] pro-
vided suitable care is exercised in the choice of gauge and
in not calculating terms which cannot contribute to the fi-

nal answer. The reader may find the arguments organiz-
ing the calculation in this way excessively intricate. An
appreciation of their value can perhaps be acquired by
contemplating the task of computing (—g)ty; [MTW,
Eq. (20.22)] in full detail for the superposed and non-
linearly interacting Kerr and external-universe metrics in
an arbitrarily rather than carefully chosen gauge.

The methods of matched asymptotic expansions raise a
number of mathematical issues whose resolution would
lead to increased confidence in the results presented here.
The forms of the expansions (2.1), (2.5), and (2.6) have
been motivated physically rather than demonstrated
mathematically. Are these expansions rigorously and gen-
erally valid in some precise sense?>> Can a more rigorous
and geometrical meaning be given to the approximate ex-
traction of the body’s mass, momentum, and angular
momentum from the family of spacetimes generated by
varying the mass of the body while keeping parameters of
the external universe fixed? Can the derivation of the
equations of motion be carried out in a manifestly gauge-
invariant way?** Are the results obtained the first orders
in an always well-defined procedure of successive approxi-
mation? We believe that the answer to all these questions
is “yes,” and that it is a problem of considerable interest
to give a rigorous justification of the approximate situa-
tions discussed here. :

III. DERIVATION OF LAWS OF MOTION
AND PRECESSION
FOR AN ARBITRARY BODY

A. Foundations

The derivation of laws of motion and precession in Sec.
11 was limited for clarity and familiarity to the case of a
Kerr black hole. We now turn to the general case of the
motion and precession of an arbitrary, isolated body
(L<«<#R, L., L <<7), with slowly time-changing
moments (T <<.7), interacting with an arbitrary external
universe. Our analysis ‘will follow the pattern of Sec. II
but we will augment it with the multipole-moment for-
malism of Thorne.!*3 '

In the general case, because of the large number of di-
mensionless expansion parameters in the buffer region and
their specific forms (M /v, L/¥, ¥ /T, v /R, v/ L, ¥ /T,
there are two pairs of complicated matched asymptotic
expansions occurring at once: (M /r, L /r)X(r/T) and
(M/r, L/r, v /T)X(r/#, r/.L, r/7). However, we
shall neither spell out the details of the expansion tableaux
[analogs of Eq. (2.6)] nor the details of the limits and the
matchings involved in the analysis. Rather, with confi-
dence gained from the analysis of Sec. II, we shall proceed
more simply and directly to the final, more general re-
sults.

In the buffer region around our arbitrary, isolated body
we introduce coordinates (t,x/) which are nearly Lorentz
and precisely deDonder (harmonic), and which at time
t =0 are centered on the body (so there is no dipole term
I jxj /r3in go) and coincide with the body’s asymptotic
rest frame (so there is no spatial momentum term —4P;/r
in go). We further require, as in Sec. II, that as time
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passes these coordinates remain local asymptotically iner-
tial (so there is no acceleration term a jxj in gg and no ro-
tation term €;;x kot in 80,); the slowness of all time varia-
tions guarantees that this can be achieved by adjustments
of gauge which keep the gauge deDonder. Such a coordi-
nate system, in the body’s “buffer region” and the outer
parts of its “neighborhood,” makes precise the concept of
“the body’s local asymptotic rest frame” used in Sec. I.

In these coordinates we shall characterize gravity by the
contravariant metric density:

gP=(—g)/2gob g =det||g,, || , (3.1

where g?# and 8uv are the components of the metric, and
we shall denote by — /4 ? the small deviations of 8 from
the Minkowski metric n*#=diag(—1,1,1,1):

geP=nb_pob . (3.2)

The “isolation” of the body guarantees that |2%| <« 1
throughout the buffer region. In the limit that only linear
corrections to 7 are included, 7#°? is the trace-reversed
metric perturbation, but in the nonlinear regime it is not.

We shall split 4’ @8 up into three parts: one kg’ associ-
ated with the body (analog of g!®’—7 in Sec. II), a second
EEB associated with the external universe (analog of
g —n in Sec. II), and a third Ay £ associated with in-
teractions between the body and the external universe
[analog of interior terms in Sec. II’s tableau (2.6)]:

RoP=hgP+hgf L hf* (3.3)

We shall study each of these parts in turn, and then insert
them into the surface integrals (2.3) to derive the laws of
motion and precession.

B. The body’s gravitational field ; ;ﬂ

The body’s field A, g” is defined to have the same form
as it would have if the external universe were flat space-
time.!* This form is fully determined in the buffer zone
by two families of multipole moments, “mass moments”
M, 7y, I iy F jkims - - - » and “current moments,” %;
ks & jki» & jkim»- - - - These moments are purely spa-
tial tensors which are symmetric and trace-free (“STF”)
on all pairs of indices. They are independent of spatial
position, and M and .#; are truly constant (except for
radiation-reaction-induced changes which we shall
neglect), but &, F s ..., Ljks L juise .. may vary
with time ¢. The body’s mass M is the “mass monopole

moment,” £ is the “mass quadrupole moment,” and

# jiy is the “mass octupole moment,”. .. ; the body’s an-
gular moment .%; is the “current dipole moment”; . j is
the “current quadrupole moment,” and ., is the
“current octupole moment,”. .. . The moments for a Kerr
black hole have been computed by Hansen,*® and Giirsel®’
has translated them into Thorne’s conventions. The
lowest few moments are given in Eq. (1.7) above; see also
Sec. XID of Ref. 14. The moments of any body have

magnitudes

| Faay o | SMLY | L, a| SML!,

192"

(3.4)
forl>2,
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where M, L, and T are the length scales defined in Egs.
(1.1) and (1.2).

If r=[(x")?+(x2)2+(x*)?]"/? is the distance from the
body, then the region » << T is the “near zone” of the
body and r >>T is its ‘“wave zone.” We demand that T
be very large (T >>L) so that the buffer region can be
contained entirely within the near zone, ¥ << 7. If L >M
the body has weak internal gravity; if L ~M its internal
gravity is strong. In either case we shall confine our
buffer region to the weak-gravity zone » >>M far outside
the body’s surface r >> L.

Thorne (Ref. 14, Sec. IX) exhibits the general structure
of the body’s gravitational field Egﬂ as a spherical-
harmonic expansion and a simultaneous power-series ex-
pansion in the three dimensionless variables: M /r (“non-
linearity expansion”), L /r (“distance-from-body expan-
sion”), and /7T (“time-derivative expansion”). (Thorne
uses the notation R for L and % for T.) It will turn out
that, to derive the body’s equations of motion and preces-
sion to the accuracy of Egs. (1.9), we must know }Tgﬂ with
accuracy

_ 2
| errors in hgP| <<—A% . (3.5)
r

Giirsel (the Appendix of Ref. 37) gives &, 2% to the required
accuracy (but note that the sign of his 7Y is reversed)

4M | IM? | 8M3 | 65 ynin*
B =" r—, (3.6a)
r r r r
7o 2y IFknt 2 yM St 4y K n'nm
p=+ 2 3 Pl ’
(3.6b)
— M? ..
hg= 7’1'1’!1 . (3.6¢)

From Sec. IX of Ref. 14 (or by dimensional analysis) we
infer that the largest corrections to these 45" have the fol-
lowing forms and magnitudes:



Mt (ML M|
rt 3 L ¥
S M s M ML? | | M
< R Y
4 S|, = -
P 7. 2
Jjki < Jjki < ML L ’
N R ’
S iM? ML | (M| |M
r4 < r3 ~L_ —r_ ’ 3.7
737k ML? | M
4 = | ,3 P
d/jk/dt < ML? r
r2 ~ r3‘ T |’
d.5  /dt ML || r
r2 ~ r3 T

Since M /L <1, M <<r, L <<r, and r << T these correc-
tions are all of the allowed magnitude (3.5).

C. The gravitational field of the external universe

In the Appendix to this paper we use the methods of
Ref. 14 to sketch out the general structure of the gravita-
tional field Eg” of the external universe in the body’s
buffer zone. That field is determined by two families of
STF moments: electric-type moments &, ..., and

magnetic-type moments %, ... o; but whereas the body’s
mass moments ., ..., begin at monopole order (M) and
its current moments %, ..., begin at dipole order (.%;),

both families of external moments begin at quadrupole or-
der, & j; and & ;.. The external moments are independent
of radius r but may vary with time ¢z. In order of magni-
tude

1 1
Ig“1"‘“z| SWZ‘ > |'%a]~"a,| S‘@zfl—-Z ’
d 1
@B u| S gy o
d 1
aPe | S gpgiog

where #, £, and .7 are the length scales of Eq. (1.3)
with .& <.9? L <T.

It will turn out that, to derive the body’s equations of
motion and precesswn to the accuracy of Egs. (1.9), we
must know hg B with accuracy:

P2
.@2'

In the Appendix we show that to the required order and
with a specialization of the deDonder gauge, A EB is

| errors in Ag? | <« = (3.9

P =28 pxixk, (3.10a)
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k‘

(3.10b)
(3.10c)

2
hy =€y B mx'x"

0.

:‘

D. The interaction field

The full gravitational field A*" must satisfy the
deDonder gauge conditions

" =0 (3.11a)
and the vacuum Einstein field equations®®
N RMY p=WH (3.11b)
W= —16m(—g)thy —h*® gh*P o+ B* h"‘B }
(3.11c)

Here t{ is the Landau-Lifshitz pseudotensor [Eq. (2.3d)].

The body field 44" by itself satisfies the gauge condi-
tions and field equations (3.11), as does the external field
by itself. However, when both are present in A*¥ the non-
linearity of the field equations (3.11b) requires that ‘an in-
teraction field 7} also be present. In principle we could
iterate the gauge con(_iitions and field equations (3.11a)
,and (3.11b) to obtain A}". Such an iteration, keeping the
coordinates inertial (so there is no acceleration term a jxf
in ggo and no rotation term ejklxka)’ in go;) would pro-
duce, via the gauge conditions (3.11a), secularly changlng
terms of the form 4P t/rand Ze,k,f ktn!/r? in hy’, where
P/ and #* would be the expressmns given on the right-
hand sides of Egs. (1.9b) and (1.9¢); cf. Sec. IX G of Ref.
14. Since, in deDonder gauge, the body’s momentum and
angular momentum always show up in precisely this form
in 7Y (cf. Secs. IX and X of Ref. 14), from these &}’ we
would infer that the interactions produce the time changes
of the body’s momentum and angular momentum given
by Egs. (1.9b) and (1.9¢).

E. Derivation of M, P/, and .% / from surface integrals

We have not actually carried out this iterative solution
of the field equations. Instead, we have computed PJand
#7 and also M (which is zero to our accuracy) by the
mathematically equivalent but computationally simpler
route of evaluating the buffer-region surface integrals
(2.3). The remainder of this section is a demonstration
that the surface integrals (2.3) give the claimed results:
Egs. (1.9b) and (1.9¢) for P/ and .#/, and zero (to accura-
cy ML /%?) for M.

To avoid unnecessary calculations we first list all possi-
ble final answers that we might get: All final answers
must be constructed as products of at least one &, ...,
or .@ -a, OF time derivative thereof with at least one
M, Y ./ -ap OF f , or time derivative thereof;
and the products can 1nvolve the Levi-Civita tensor €;j.
If we assume that T << #%/M or T << #?/M, the largest
dimensionless scalars that can be so constructed are

M~(F*& FI*NE e & B i) &(I* & FTNE j & B ),
(3.12a)
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and thus the final answer for M can involve only these
terms plus corrections of higher order. Here “&” means
“and a term of the form,” as in Eq. (2.6). Similarly the
largest dimensionless vectors that can be so constructed
are

Pl (&, & #7,).57%, (3.12b)
and thus the final answer for P/ can only involve these
two terms plus higher-order corrections. Finally the larg-
est vectors with dimension length that can be so con-
structed are

L& & BILIMI* & (8, & B )N IP& F) ,
(3.12¢)

and thus the final answer for %/ can only involve these
terms plus higher-order corrections.

Some of the terms in (3.12a), (3.12b), and (3.12¢) can be
ruled out by parity and time-reversal considerations,
which we describe in this paragraph in more detail than
most readers will want: Under spatial reflections (for
which Pi—++Pi, yi__)_yi’jpi —f fk—>+fjk,
f]k——>— Jjk» g_}k—)gjk’ '@jk_’ '%]k’ and
€;x— —€;jx) the following terms do not transform
correctly and are thus ruled out: .~ /*% ko sk ko
P sf,k, and #7*& ; in (3.12a); &/, ¥ in (3.12b); and
BIMF*, €, E°, Yd’ and e’ab%’“ % in (3.120).
Under time reversal (for which M—>—M, P 4P
.‘Yi—>+.'f", yi ——y 'fk-')'!—fjk’ fjk—”—fjk’
Ex—+&j, Bjx—— %’Jk, and €;; — +€;5) the follow-
ing terms do not transform correctly and are thus ruled
out: %z ko sk ks S fk, and Y’kgk in (3.12a);
gfkfk in (3.12b); and gjka e’,,,,%" ¢, and
B in (3.12¢). (In the actual computations the
parity-incorrect terms are removed by the angular integra-
tion of the surface 1ntegrals (2.3). Consider, for example,
the term ./~ %7, M.7*. Because of the way that the
Levi-Civita tensor € enters into hY” and hE” [Egs. (3.6)
and (3.10)] and because there are no €;;’s in the expres-
sions for {] and W*” in terms of A*” [MTW Eq. (20.22),
and Eq (3.11¢) above], an 1y term .7/~ B/, M. %% must
arise in Eq. (2.3¢) from a #{} of the form

—g)t{f‘L~%e.a..Yae.b..%b. . (3.13)
Here each subscript dot is a j or a k or is contracted into
an n' or is contracted into another subscript dot. When
(3.13) is inserted into Eq. (2.3c) the resulting integrand
will involve an odd number of »’s and will thus integrate
to zero.) (Similarly, in the actual computations, the
time-reversal-incorrect terms are absent because they nev-
er show up at all in (—g)ti"L; considerations of temporal-
index counting rule them out. Consider, for example, the
term 7~ Eh Mk 71 is generated, in the surface in-
tegral (2.3c), by ¥ which has no temporal indices. All of
the processes involved in computing ¥} [iteration of the
Einstein equations and deDonder gauge conditions (3.11)
to get nonlinear terms in 45" and %% from linear terms
(Sec. IX of Ref. 12 and the Appendix of this paper); fur-

ther iteration to get A} from h%* and %%", and computa-

tion of t¥; from h**=h}"+hE" +h}"] involve changes in
the number of temporal 1ndlces by an even integer 2,
4, ..; for example, pgOFl= h? po+WY,  and
L ~—+878%80, 002" ,0 Thus tﬁL must arise ul-
timately from a product of one or more linearized h%”
with one or more linearized % %", and that product must
have an even number of temporal mdlces However, & jk
originates in the linearized part of hE y M onglnates in
the linearized hy’, .%; originates in the linearized ¥, and
the product of these has an odd number of temporal in-
dices, five, by contrast with ¢/} which has an even num-
ber, zero. Thus, no & ; M | term can appear in ¢ ﬁL, and
correspondingly none can appear in 71

After eliminating from (3.12a), (3.12b), and (3.12c) the
terms ruled out by parity and time- reversal invariance, we
obtain for the possible forms of M, P/, and %7

M~55%g ) & SI*B 4 & 55 & S7*B
(3.14a)
~ B (3.14b)
FI &I & B TP . (3.14c)

Zhang® has recently performed the surface integration
(2.3a) to obtain the numerical coefficients of the four
terms in M [Eq. (3.14a)]. His final answer, after averag-
ing over time, is given by Eq. (1.15).

The possible final answers (3.14b) and (3.14c) for P/
and .7/ are linear in each of &> B, L j» S jk, and
< j. Thus, we only need those parts of ¢{; which are
linear in these quantities, and they can be obtained from
the linearized and truncated metric [Egs. (3.6) and (3.10)]

h%= 4y, h%=—-4;, h'=0; (3.15a)
nink .
1/): ; ——%———!—%?fjkx’xk ; (3.15b)
r
A= 2ejk1fkn1 4ejk,fkmnln”‘
i= »2 - r3
_% jkl'@kmx’x"‘ , (3.15¢)

in which the moments are all regarded as time indepen-
dent Inserting Eq. (3.15a) into MTW Eq. (20.22) for
gt in terms of g§*f=x*f_h*f and keeping only
terms of quadratic order, we obtain the standard result for
a time-independent field in the linearized approximation
to general relativity:
g)t’fL———é—[4gigj+HiHj— 1sU(ag 2+ HY)], (.16a)
T
where g is the Newtonian acceleration and H is the gravi-
tational analog of the magnetic field (“gravitomagnetic
field”)

§=“§¢»

(Here we use three-dimensional flat-space notation.)
By inserting expressions (3.15b) and (3.15¢) for ¥ and
A; into Egs. (3.16) for the pseudotensor and performing

H=VxA . (3.16b)
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the integrations (2.3b) and (2.3c) we obtain the claimed re-
sults

dP/

So= — R, 7, (3.17a)
j , ;
ﬁd_"(j— gt Bt 7o b (3.17b)

[cf. Egs. (1.9)].

F. Accuracy of definitions of M, P/, and %/

We conclude this section with a discussion of the accu-
racy to which the body’s M, P, and .#* are determined in
the presence of the complicated external universe. As in
Sec. II, M, P’, and %’ can be determined by surface in-
tegrals of the form (2.2a), (2.2b), and (2.2¢); and as in Sec.
II the uncertainties in M, P’, and %" are of order the non-
linear contributions to those surface integrals, which re-
sult from the coupling of the body metric to the external-
universe metric. Considerations of dimensionality, parity,
time reversal, and lining up of indices tell us the forms of
those differences [analogs of Egs. (2.12)]:

.s 2
(uncertainty in M)Ng,j/"]& %iij:O A;?I; »
(3.18a)
(uncertainty in P') ~ €3 B9 ,* & €, 67°.% ,*
2
o] am
. 3
(uncertainty in ) ~M?&Y.7 ;=0 A;?f (3.18¢)

IV. EQUATIONS OF MOTION AND PRECESSION
FOR A SYSTEM OF SEVERAL BODIES

When the “external universe” through which the body
of interest moves is so massive that it is affected negligi-
bly by the body’s presence (“test body”), the conversion of
the body’s laws of motion and precession (1.11) into ex-
plicit equations of motion and precession is completely
straightforward. The body’s world line is a curve in the
external universe described by the fixed g'%, and the laws
of motion become differential equations for this curve.
Not so straightforward are systems where the body’s back
action on the external universe is important. In this sec-
tion we study, as an example of such a system, several
bodies of comparable mass orbiting each other. In subsec-
tion A we use our single-body laws of motion and preces-
sion (1.11) as a foundation for deriving the several-body
equations of motion and precession for this example, and
in subsection B we specialize our several-body equations
to a black-hole binary system, and thereby recover
D’Eath’s® equations of motion and precession.

A. Derivation of several-body equations of motion
and precession

Consider a system of N bodies each with mass <M and
size <L, orbiting each other with separations >.# and
velocities <(M/.Z)'/?, where M, L, and .£ are con-
stants that characterize the system and M «<.%Z,
L «<.Z. For such a system the equations of motion and
precession can be expanded in powers of M /.Z (“post-
Newtonian expansion”). When one of the bodies is a
black hole, the coupling of its multipole moments to the
external curvature will first show up at post!->-Newtonian
order [fractional corrections ~(M /.#)*/? to Newtonian
motion; fractional errors of post-post-Newtonian order,
(M/.£)’]. For this reason we shall seek post!->-
Newtonian accuracy when deriving the equations of
motion and precession.

In order to simplify our analysis, we shall require that
all the bodies in the system be sufficiently compact that

L<(MZL)?. , 4.1

Then the spin-curvature “force” —.#°%,’ of Eq. (1.9b)
[with | 2| <M/ LM/ L)? and | F7| <ML]
and the quadrupole-curvature “force” — +.#,, €% of Eq.
(1.12) (with | g | <ML? and | &Y | <M /%% can
both be as large as post-Newtonian magnitude M3/.#3
(though they are post'->-Newtonian for a black hole).
Thus, these —.%°%,’ and —+.7 ., & forces must be
included in our analysis. On the other hand, all higher-
order moment-curvature coupling forces are of post-post-
Newtonian magnitude or smaller and thus can be ignored.
Similarly, the quadrupole-curvature torque — €/ ,.#%, &
of Eq. (1.9c) can be as large as post-Newtonian magnitude
M3/ £? (post'>-Newtonian for a black hole) and must be
included, but all other moment-curvature coupling
torques are of post-post-Newtonian magnitude or smaller
and can be ignored. Thus, in our analysis we must keep
the effects of each body’s mass M, angular momentum
% j, and mass quadrupole moment .# jk» but we can ignore
all other moments.

The single-body laws of motion and precession (1.9) and
(1.12) are only one ingredient in the derivation of the
several-body equations of motion and precession for this
system. A second key ingredient is a spacetime metric for
the “external region,” which joins the buffer zones of the
bodies to each other. In order to obtain post!3-Newtonian
equations of motion and precession, we shall need an
external metric g'” that satisfies the Einstein field equa-
tions to post!'3-Newtonian order.

As is well known,* an approximate several-body metric
cannot satisfy the Einstein field equation to post”-
Newtonian order unless the world lines that appear in it
satisfy the post” ~D-Newtonian equations of motion.>
Thus, what we really need for g'® is not a true post!->-
Newtonian metric, but rather something we might call an
“incipient” post!’>-Newtonian metric: a metric in which
appear the world lines of the bodies of our system, and
which has the property that it will come to satisfy the full
post!->-Newtonian Einstein equations as soon as the world
lines are constrained to satisfy the equations of motion.

Einstein, Infeld, and Hoffman? (EIH) have given an in-
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cipient, post!'>-Newtonian external metric (errors of
post>-Newtonian order) for a system of bodies with
masses but no spins or quadrupole moments [see Eq.
(39.63) of MTW]. It is straightforward to graft onto that
incipient metric terms due to the spins and quadrupole
moments of the bodies, since assumption (4.1) makes
those terms be no larger than post-Newtonian magnitude
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Here capital letters label the bodies; M4, . 47, and & /%
are the mass and the spatial coordinate components of the
angular momentum and quadrupole moment of body A4;
the center of attraction of the gravitational field of body
A at time ¢ has spatial coordinates x 4/(2), i.e., x,/(2) is
the world line of body A4; and we define

d

‘and thus be devoid of nonlinearities at the desired post!>- v, /= = A, val=v—vgl,
Newtonian level of accuracy. After this grafting the ETH t_ )
incipient metric takes the form .oxt—x 4/ . .
cp nAJE——r—A— , ra=[8p(xi—x ) xk—x 512, 4.3)
4
8 =85 1+22— +0 Mzz , (4.22) xJ—xy } s
T4 Zz nagl=—"", rp=[8 k(xA —xp)(x 4 —x"M)]'% .
Y4B
ejklf Akn gt M37? The equations of motion for the bodies determine the
‘“—42 UAJ"22 52| world lines x,/(¢) of their centers of attraction in the
ra’ external metric; the equations of precession together with
(4.2b) constitutive relations [e.g., Egs. (1.7) for a black hole and
Ref. 22 for a rigidly rotating neutron star] determine the
i i J(t) and quadrupole moments
M M, 1? M.,v,? evolution of the splns..Y 4 q p
goo=—1+2 2 Z4 _, 2 4 3 2 TATA a2 Afk(t); and the equations of motion and precession con-
4 Ta 4 Ta 4 T4 vert the incipient metric (4.2) into a full solution of the
2 Einstein equations, accurate to post!->-Newtonian order.
MMz 3 3 . . .
-2 > — + 2 My, To derive the equations of motion and precession for
A Bra Talap 0" % body K from the laws of motion and precession (1.11a),
I gt n " (1.11b), and (1. 12) we must first identify the “external-
+3 E —-—j— universe metric” g ,w X seen by body K in its buffer region.
ra’ The most accurate candidate for that metric is the full
€ JF iy 1 3 EIH incipient metric (‘_1.2) with all terms removed that are
+42 JkiZ4 zA 4 +0 M3 (4.2¢) divergent as rx—0 (i.e,, with all “body-K terms” re-
A T4 < moved):
J
M M?
(0K 4
g =8 [1+2 — |+0 |— |, (4.4a)
J j AEK 4 2
ky 1 5/2
O)K Ejkly 4 N4 M
—4 E 4—2 > , (4.4b)
A=k T4 A£K "A2 [35/2
M AMB
i3 M s Ml s M, 5 5 My By,
A=K T4 A=k T4 A=k T4 A#K B=A TAV4B at A#K
I ghg'n ExVa S 4 Fn 6
+3 2 Ajk A A 14 2 jk1V 4 A A M6 (4.4¢)
A#K ra A#K ra® <
A less accurate candidate is the EIH incipient metric with Mg set to zero:
M M,
g O)K_gJ(O)K . gl HOK_ g (;)K , guOK _glK | 5 aMk 4.5)
A=k Tarax

Note that these two candidates differ by a term 27, , xMaMg /7 4r 4 which, when expanded in powers of rg, has the

form

(0K
goo  — =2 2
A~K "AK

nAK”f(

22

A#K "AK

Mgrg+

M,
23 (3nAKn,’4KnKn}(—l Mgrg?+ -+ . (4.6)

A#K rAK
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If we were to transform to a reference frame in the buffer
region of body K that falls freely in the external metric
(the “local asymptotic rest frame” of Secs. II and III), the
first two terms on the right-hand side would disappear,
while the third would remain unchanged. Note that this
remaining third term has the form Mr2/223, in the nota-

tion of the tableau (2.6) [where M =My, r=rg, and.

R ~(r°/M)'V? is regarded formally as the same as
&L ~ryk]. As is discussed in the next to the last para-
graph of Sec. II B, this Mr2/Z° term can be moved into
and out of the external-universe metric g'© without in-
validating the laws of motion derived in Secs. II and IIIL.
However, the accuracy of the resulting equations of
motion for body K will depend cruc1a11y on whether this
Mr?/2° term is included in g'¥ or not. Failing to in-
clude it, i.e., using g, (9K (Eq. 4.5) for g'?, would produce

“test-body equations of motion” which ignore the back
action of body K on the other bodies of the system. In-
cluding it, as we shall, i.e., usmg g ,“,K [Eq. (4.4)] for g'©
will produce the full post!->-Newtonian equations of
motion, including the effects of back action.

Having thus identified expressions (4.4) as the g© for
body K, we can now convert the laws of motion and pre-
cession for body K into equations of motion and preces-
sion. The laws are given by Egs. (1.11) augmented by the
frame-independent version of (1.12):

Here ug? is the four-velocity of the world line xKJ(t) in
the external metric g,w)K seen by K; Px®*=Mgug® is the
four-momentum of K in that metric; “|” denotes the co-
variant derivative in that metric; and &ng % kqp and
& kapy are expressed 1n terms of the Riemann curvature
tensor Rkgqygy Of g‘w by the frame-independent versions

of Egs. (1.4a) and (1.13a) evaluated on the world line of K:

& kap=Rrauptix"ux” , (4.8a)
'@Kaﬁ= %euapaRvaf}vuK#qu ’ (4.8b)
& kapy =[Rkappy| otk ux (8% +ugug,)1° .  (4.80)

Here the superscript S denotes symmetrization on all free
indices, afBy. Note that the fact that “x® and # x*f are
purely spat1a1 m the asymptotic rest frame of K,
FLk®Uga=I kPugp=0, implies that to post!>-
Newtonian accuracy

0 .
Sk =‘yKJUKj’

i0_ g ij 0_ 4 ij
Jk' T =IkNkj, Ik =Tk ,

(4.9a)
(4.9b)

and similarly for & x,p, # kap, and & kop,.

It is now straightforward, though moderately tedious,
to evaluate the single-body equation of motion (4.7a) for
our several-body system. The result is

d*%x - - - -
=F (EIH) F (Q) F (SO) F (SS) X 4.1
Pg® pugP=—B kP S kg—1E s s T, (4T7a) K KRR T .10
Here ﬁK(EIH) is the “force” term of Einstein, Infeld, and
 ka| kP = —€uapy? kP8 ks uk" 4.70) - Hoffman® [Eq. (39.64) of MTW]
]
- MM M, 1 Tuk _, - - - o o =
FK(EIH): —-‘A—“IE'KAK 1—-4 2 —_— — 2 =< —a‘—iK;HAK Ncy +VK2+2VA2—4VA’VK-'-';_(VA'I]AK)Z
A+#K rak’ Bk 'BK  Cx4 Tca ¥
MM MM/ M,
— 3 VA i V=) E S S B 4.11a)
A+K T4k A#K C+£A Yak¥ca
_ﬁK(Q’ is the quadrupolar force term
ﬁK(Q) [3fA nKA——-nKA(nKA fA nKA) z 3JK nKA'—T5 KA(nKA /K nKA) (4.11b)

A#K ”AK

A+K "AK

with the first summation arising from geodesic motion of body K in the quadrupolar part of the external metric (4.4c)
and the second arising from the nongeodesic quadrupole-curvature coupling force (4.7a). FK(SO’ is the “spin-orbit” force

- My
F 0= 3 3[6nKA(fA><nKA Via)+47 4y XVga—6(F 4 X Aga Vg Tiga)]

A#K TAK

+2

A#K "AK

[6nKA(yK><nKA VKA)+3yK><VKA'—3('yK><nKA)(VKA figa)]

(4.11c)

with the first summation arising from geodesic motion of body K in the spin part of the external metric (4. 4b) and (4.4¢c)

and the second summation arising from the nongeodesic spin-curvature coupling force (4.7a).

“spin-spin” force

’ﬁK(ss) 2

A#K rAK

o[ 3fga( Pk F 4)—3F g(Hka P ) =3F 4Bk F )+ 15Tk (Tga F k) Fga F s

Finally, Fx®® is the

(4.11d)
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which arises entirely from the nongeodesic spin-curvature
coupling force (4.7a). Throughout Egs. (4.10) and (4.11)
the notation is that of flat-space, three-dimensional vector
analysis with each vector (e.g., d*Xg/dt?, Tig4, k)
representing contravariant components in the metric (4.4)
or (4.2) (e.g., d*xx//dt?, ngJ, L ).

All of the “forces” (4.11) have been derived previously
in one context or another, e.g., wl':'K(EIH) by Einstein, In-
feld, and Hoffman®® for binary systems with weakly grav-
itating bodies [their Eq. (17.2); MTW Eq. (39.64)]; F¢'Q
by authors lost in antiquity for Newtonian systems and by
Barker and O’Connell?! for post-Newtonian binary sys-
tems with weakly gravitating bodies [their Egs. (55) and
(56)]; Fx5? by Damour® for binary systems with strongly
gravitating bodies [his Eq. (3)] and by Barker and
O’Connell?! for binary systems with weakly gravitating
bodies [their Egs. (52) and (53), which differ from our
Fx'5? because of a different “spin supplementary condi-
tion”]; and Fx®S by Barker and O’Connell?! for weakly
gravitating binaries [their Eq. (54)].

Turn next to the precession law (4.7b). In order to
bring it into a simple form we shall study not the evolu-
tion of the coordinate components g/ of 5 x in the
coordinates of (4.4), but rather the evolution of the com-
ponents . ¢/ on the orthonormal spatial basis vectors ‘e’;

of the local asymptotic rest frame of body K:

- i 9 M, d i 9
=vg’ -+ [1_ D _@T-F%UKJUKIQ .

A#K T4k

(4.12)

This is the procedure followed in Sec. 40.7 of MTW for a
spinning test particle moving in a post-Newtonian gravi-
tational field. Note that ./ and ¥/ differ only by
fractional corrections of order M /.Z:

M
1+ 3 —=

A=k Y4k

-~ N 1 N 1
L= Sk — sk’ L g

+0 [——f,(’ (4.13)

and since such fractional corrections are negligible in the
equations of motion (4.10) and (4.11) and in the metrics
(4.2) and (4.4), we are free to regard the spins .% ' and
7 x which appear there as actually equal to .

By following the computational procedure of Sec. 40.7
of MTW one can fairly easily bring the law of precession
(4.7b), for Sk’ in the metric (4.4) of the “external
universe as seen by body K,” into the following form:

d.7x
dt

z(“%ﬁK+%VKX§K)?K

—(€iapT k" gKCb)E? : (4.14)

Here, as in the equations of motion (4.10) and (4.11), the
notation is that of flat-space vector analysis but with % g

having components .# ¢/ rather than . ¢’/. The quantities
Hg and g are the “gravitomagnetic field” and Newtoni-
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an acceleration at K’s location in its “external metric”

He'=€mghns , Ex=V(3gi5) . (4.15)

A straightforward evaluation of Eq. (4.14) using (4.15)
and (4.4) gives

dt

Here O ™ is the angular velocity of “gravitomagnetic”
(or “Lens-Thirring”) precession

& (GM) 1
Qg™ = 2 3
A+K Tak

X7 g+ NQ

(4.16)

d7 —(GM)  —(geod)
Lo o a

[— 7 4 +3T8x4(Fxa Z 2],

(4.17a)

which arises entirely from the gravitomagnetic term ﬁK
of Eq. (4.14). Q ¥ is the angular velocity of “geodetic
precession”:
—(geod) MA - 3, —
Qe =3 5 (2V—5Vg)XTky ,
A+K T4k

(4.17v)

the first term of which arises from I_-iK and the second
from $VxXEx in Eq. (4.14). Finally, N‘Q is the
quadrupole-curvature torque

— M
Q) 4 - < =
NQ:‘23 3 Nga X I g gy,
A+K  Tak

(4.17¢)

which arises from the last term of Eq. (4.14).

The quadrupole-curvature torque (4.17¢) is well known
from Newtonian theory, where it produces the general
precession of the Earth’s spin axis (MTW, Exercise 16.4).
The gravitomagnetic and geodetic precessions are well
known for a test body orbiting a massive companion (e.g.,
Papapetrou'®) and for a binary system made of weakly
gravitating bodies [e.g., Barker and O’Connell,?! Eq. (41)].

B. Specialization to a black-hole binary system

When specialized to a binary system made of two black
holes (labeled “K” and “A4”), the equations of motion and
precession (4.10), (4.11), (4.16), and (4.17) reduce to a form
which agrees with that of D’Eath.® The EIH “force”
(4.10a) takes the form

MMy 4M ( +5My

. (EIH) _ - 2 -
Fg = 7 Nk |1-— +Vk2+2V 7
Y4k T4k
- 3,9 —
“4VK'VA_7(VA'HAK)2
M My
VKA___ZHAK‘(:;VA_‘,'VK) (4.183)
)4

[D’Eath,® Eq. (7.1) with the factor (3u,)? corrected to read
3u,% EIH,® Eq. (17.2)]. Because of the very small quad-
rupole moment of a black hole (Eq. 1.7), the quadrupole
force (4.11b) is of post-post-Newtonian magnitude and
thus is below the accuracy of our analysis:
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(4.18b)

- M*
FK(Q)=O I? ’ .

2
f;’K(so) M4 "MgX 4
Y ak

M Mgk
+—_

3
Y4k

[D’Eath, Eq. (6.7)]. The spin-spin force is of post-post-
Newtonian magnitude and is thus below the accuracy of
our analysis

M4

ﬁK(SS)=O ? (4.18d)

The gravitomagnetic precession (4.17a) is of post!>-
Newtonian magnitude and takes the form
_ MaXy
Q (KGM)=—_3_[— Sa+30ga(Tigs S )]
T4k
[D’Eath, Eq. (6.6)]. The geodetic precession (4.17b) is of
post-Newtonian magnitude and takes the form

(4.19a)

— M

Qg0 = —L (27, — 3V4) X Fig
T4k

[D’Eath, Eq. (6.6)]. Finally, the quadrupole-curvature

torque (4.17¢c) is of post!>-Newtonian magnitude and

takes the standard precession form (Eq. 1.9b")

(4.19v)

NQ=a0Px 7, (4.190)
where Q 7 is the angular velocity of torqued precession

— 3M MyX

Q(KT)—_—A—fKﬁKA(HKA‘_gK) (419d)

Y4k

[D’Eath, Eq. (6.6)].
Notice (as Damour has pointed out to us) that in the

limit where hole K is infinitesimal compared to hole 4,

the deviations from geodesic motion due to spin-curvature

coupling [the second piece of (Eq. 4.18¢c)] are of magni-

tude

My 172

L

MM,
JZ

M,

— S KRB g’ ~
K Ka R

This is of order the errors that one would make if one
were to compute the small hole’s motion ignoring its back
action on the large hole (“test-body approximation”; use
of g,\Y% [Eq. (4.5)] for the external metric rather than
g9k [Eq. (4.4)]). Thus, for a small black hole (by con-
trast with small-mass bodies with larger sizes and spins),
the test-body approximation must restrict attention to
geodesic motion and neglect the spin-curvature coupling
force.

[6Tka(SxXTgy Via)+3Sx XVgs—3(S g XTgg (Vg Tga)]
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The spin-orbit force (4.11c¢), by virtue of Eq. (1.7), is of
post!->-Newtonian magnitude and takes the form

=———[6T (S XTks Vga)+48 4 XVgy —6(8 4 XTgy)(VgsTga)l

(4.18¢)

V. DISCUSSION: THE PRECESSION OF BLACK
HOLES IN THE REAL UNIVERSE

We conclude this paper with a discussion of the laws of
motion and precession (1.11a) and (1.11b) for black holes
in astrophysical contexts. We do not know of any way
that the gravitational force P% Buﬂ =—#BPF5 on a
black hole might be detected astronomically in the fore-
seeable  future. However, the = tidal torque
L puP= -—euaﬁyfﬁsgayu” [Eq. (1.11b)] might conceiv-
ably be detected by its influence on the shapes of jets that
emerge from the nuclei of some galaxies and quasars:*° In
several fashionable models for jet production, a supermas-
sive black hole is at the jets’ origin and the directions of
the two jets are tied to the hole’s rotation axis, so if the
hole precesses, the jets develop an S-like shape. Jets with
such shapes are observed, in fact, by radio astronomers;
and the length scales of their S-shapes are ~ 10°—10’
light years corresponding to time scales for precession of
~10°—10° years (depending on the speeds of the jets).*°

For a Kerr black hole, with mass M, rotation parameter
X, and spin direction §, the tidal torque (1.11b) takes the
form (1.9¢"):

d.7
dt

Thus, the hole precesses with a “torqued angular velocity”
Q7 that is proportional to its rotation parameter X and
to the external electric-type curvature. The time scale
1/] Q¢ | for the torqued precession can be in the ob-
served range (though not easily), as the following example
shows.

Consider a supermassive hole at the center of a dense
elliptical star cluster. In order of magnitude & ; will be
aGp, where a is a dimensionless measure of the deviations
of the cluster from sphericity (a=~1 for a pancake-shaped
cluster), G is Newton’s gravitation constant (set to unity
elsewhere in this paper), and p is the mean mass density in
the cluster. The resulting torqued precession rate will be

=§TX§ N QT[=—-$ijMXSj‘ (5.1)

1
4x107 yr

M
10°M,

P

Qr~aGpMX =a
10°M i /1y3

X.

(5.2)
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Thus, for a very massive hole surrounded by a very dense
and rather nonspherical cluster, the torqued precession
could be interestingly large.*! - However, for more typical
situations it will be negligible.

One should keep in mind that a black hole can precess
relative to the “distant stars” (but not relative to inertial
frames in its buffer region) even when its torqued angular
velocity vanishes: When the hole lives in a complicated
external universe, pure Fermi-Walker transport of the
hole’s spin (zero torque) can produce geodetic precession
[second of the three terms in Eq. (4.14)] and gravitomag-
netic precession [first term of Eq. (4.14)]. For example, if
the hole is in a circular orbit of radius b around an exter-
nal body of mass My >>M, its orbital motion gives rise to
the geodetic precession of its spin, d.?/dt =Q geod X 5 s
relative to inertial frames far from the system (at r >>b).
Here

. M,
Q geod = —z-b—

172

M
£l =5, (5.3)

b 3
[Eq. (4.19b)], where # is the normal to the orbit. Similar-

ly, the spin angular momentum T g of the external body
gives rise to gravitomagnetic precession with

~ BTz PFr—Tg
QGM=——b3“—“

[Eq. (4.19a)], where 7 is the unit radial vector from the
external body to the hole. For comparison, the dominant
tidal field & j of the external body is

) (5.4)

Mg o
gjk=‘l;T(——3rjrk+8jk); (5.5)

and this tidal field produces a torqued precession of the
hole relative to its local asymptotic inertial frame
(Mpgle << | T—Thole | <<b) and also relative to distant
inertial frames (r >>b) with angular velocity [Egs. (5.1)
and (4.19d)]

_ MMy
Qr=-3X P CosOF . (5.6)

Here 0 is the angle between the hole’s spin direction S and
the radial direction 7. The relative magnitudes of these

three precessions, ‘‘torqued,” ‘‘gravitomagnetic,” and
“geodetic,” are
|'Q’TI:|QGM|:|‘Qge0d|
172 172
~X iM_ . ﬁ .1 (5.7)
T Mg b b 7 )

where Ry is the external body’s radius, and we have as-
sumed that the body is rotating as rapidly as possible (cen-
trifugal force of order self-gravity force) so as to make the
gravitomagnetic precession as large as possible. Note that
for this orbital situation Q7 << Qgm < Qgeod-

This conclusion, that torqued precession is negligible
compared to geodetic and gravitomagnetic, may seem
surprising to someone imbued with a Newtonian
viewpoint. After all, torqued precession is a Newtonian

effect, while the geodetic and gravitomagnetic precessions
are post-Newtonian. However, for a black hole the
torqued precession is strongly suppressed (to post!->-
Newtonian magnitude) by the small size of the hole and
the consequent smallness of the hole’s quadrupole mo-
ment. Begelman, Blandford, and Rees,*? being well aware
of this, have identified geodetic precession as the astro-
physically most important precession that a black hole
can undergo, and have suggested it as the most likely
cause for the S-shaped distortions of jets in galactic nuclei
and quasars.

It is only when geodetic and gravitomagnetic precession
are strongly suppressed below their values for binary sys-
tems that the tidal torque d %/ /dt = —€/,,.#°°& . will be
the dominant source of precession. An example is a hole
at rest at the center of an elliptical star cluster which has
negligible angular momentum [Eq. (5.2) above].

As small as the tidally torqued precession may be in
practice, it is enormously large compared to the tidally-
induced spin-down of a black hole.*> The spin-down was
of great importance historically because it gave us new in-
sight into the behaviors of black-hole horizons. In the
“membrane viewpoint” on black holes,* which grew out
of that insight, an external gravitational field & j raises a
tide on the hole’s horizon, and as the hole rotates the re-
sulting rate of shear of the horizon works against the
horizon’s viscosity to dissipate rotational energy. The
rates of loss of rotational energy and angular momentum,
in order of magnitude, are

dM = d.7
dt =Qu dt

where O g is the hole’s angular velocity, which has mag-
nitude of order X/M. Note that the spin-down rate,

Qsp~ | # | ~'|d.F /dt |, has magnitude

~(M*Qu &), (5.8)

Qsp~M3/R* . (5.9)
Thus, it is smaller than the torqued precession rate by
Q 2
so_ 1M (5.10)
Qr X #*

For the extreme star cluster of Eq. (4.2) (highly nonspheri-
cal with mean star density 10° solar masses per cubic light
year) and a black hole of 10° solar  masses,
Qsp/Q7~10712¥~1, Thus, for any reasonable amount of
rotation (X >>107!2), the tidally torqued precession is far
stronger than the spin-down.

The tidally torqued precession was overlooked in the
black-hole analyses of the 1970’s (Ref. 43) because those
analyses focused primarily on the physics of the horizon,
and the dragging of inertial frames is so strong near the
horizon that changes in the direction of the angular-
momentum vector relative to the inertial frames of the
buffer region do not show up there.*> On the other hand,
analyses in the buffer region (the method of this paper)
are capable of revealing both the torqued precession and
the spin-down. The spin-down will show up in the buffer
region as a flow of angular momentum due to the non-
linear interaction of the external field & ;; with that part
of the hole’s quadrupole moment .# ;; which arises from
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tidal distortion of the horizon by the external field. Al-
though we have not carried through the details of such a
calculation, a somewhat similar calculation was per-
formed by Press,*> for spin-down of a hole interacting
with an external scalar field, shortly before horizon tech-
niques were devised by Hawking and Hartle*? for comput-
ing spin-down.
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APPENDIX

Thorne (Sec. IX of Ref. 14) has developed an algorithm
for constructing the metric density 8P (and from it the
metric g,g) in the weak-gravity near zone (M <<r, L <<,
r << T) outside any body that lives alone in asymptotically
flat spacetime. That algorithm constructs @ %f as
deDonder-gauge power-series expansions in M /r, L/r,
and r/T with expansion coefficients that are the body’s
mass moments £ a g and current moments % a; - q

and their time derivatives; cf. Eq. (3.6), which is not car-
ried to high enough order to exhibit the time derivatives.

This appendix sketches an analogous algorithm for con-
structing the metric density §%? in the vacuum neighbor-
hood (r << #, r <<.Z, r <<.77) of a timelike geodesic in
an arbitrary spacetime.

As in Ref. 14 our algorithm will take as its starting
point the general solution to the stationary, linearized,
vacuum Einstein equations and deDonder gauge condi-
tions [the linearized, time-independent limit of Egs. (3.2)
and (3.11)]:

R T 3 h_gg,jkyk=0 s
In Ref. 14 the starting solution was required to be well
behaved as r— . Here it must be well behaved as » —0;
and, in fact, because r =0 is a timelike geodesic, it can be
chosen to have 775 ~r? near r=0 (see, e.g., Sec. 8.6 of
MTW). The general solution to (A1) with ‘ﬁé’ ~r? can be
brought into the following form by a careful adjustment
of gauge:

R, =0. (A1

o0

Rls=—3 o 84X (A2a)
1=2

Rk = 2 301y e B an_ %o Xy s (A2b)
=2

hgs =0. (A2c)

Here the notation is that of Ref. 14 (Sec. IC): &, , and
# 4, are constant STF tensors with the subscript 4, a

shorthand
Xy =XqXq," "

notation for aa, - ap x;=x7;

, Xq,; and the indices are treated as though

the coordinates were precisely Cartesian (down indices are
equivalent to up indices and repeated indices are
summed). [This general linearized stationary solution can
be derived, e.g., (i) by writing down the general solution
R of Laplace’s equation, well behaved at r=0, in STF
notation with ten independent families of moments; (ii) by
then imposing the deDonder gauge conditions to get rid of
four families of moments; and (iii) by then performing
gauge transformations with generators £, that are solu-
tions of Laplace’s equation to get rid of four more fami-
lies of moments.] Our normalization of the moments is
designed to make the linearized, stationary Riemann ten-
sor look nice:

Rjo,cozéz & na, Xa_,» (A3a)
Rijro= g L€ijgZ qiea, X4, _,
+ 3 —2)€pg (i B 1gha,_%pXa,_,) > (A3b)
Ripjg= g P‘IAI_2+8P‘1$UAI~2
—8:4& jpa, ,—0p&iga, ) X4, _, - (A3c)

Note that the moments & 4 ; determine the “electric part”
of the Riemann tensor R;g;o and the moments % 4 , deter-
“magnetic part” Ryjo; thus &4 , are called
“electric-type moments” and % 4 are called “magnetic-

type.” Alternatively, by analogy with the external field of
an isolated body, & 4, are the “mass moments” and % , )

the “current moments” of the Riemann tensor.

The general solution of the fully nonlinear, dynamical,
vacuum Einstein equations and deDonder gauge condi-
tions [Eqgs. (3.2) and (3.11)] can be constructed from the
linearized, stationary starting solution (A2) by iteration.
In the iteration one regards the moments & 4 and % 4, as
having the magnitudes and time derivatives (3.8) (with
“~ rather than “<”); and one expands #*” in powers of
r/# (“nonlinéarity expansion”), r/.¥ (“distance-from-

mine the

origin” expansion), and r/7 (“time-derivative expan-
sion”), and in spherical harmonics:
W="3 Voo - (Ada)
pnul
Here
2p n u
r r r
¥ prut ~ l 2| 1= |- ] ] , (A4b)
Z =4 7 order !

and [ is the spherical-harmonic order. In terms of this ex-
pansion, the Einstein equations and deDonder gauge con-

. ditions read

2

3

VY ot = 32 3 Vomu—21+Whaut » (A5a)
3 u 3

o Vo == 3 Vo1 - (AS5b)
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Here w}y,; is the “pnul” part of the nonlinear field W*¥
(3.11¢); it is constructed entirely from terms of lower or-
der than “pnu.” Because all quantities appearing on the
right-hand sides of Egs. (A5) are of lower order in pnu
than quantities on the left, these equations form the foun-
dation for an iterative solution for #*".

The starting point for the iteration is the linearized, sta-
tionary solution (A2):

4

¥ —2000= ~Ta—n ZaXy for 122, (A6a)
j 2
V?fl-:)oz:_mequ%qu_lprAl_l for 1>2,
(A6Db)
all other  y{75;=0, (A6c)

with & 4 , and B 4 , now regarded as slowly varying func-
tions of time.

The metric density @#Y=7*"—h"" that results from
this iterative algorithm will be a power series in radius 7.
The first few terms in this power series (too few to show
the effects of nonlinearities) are

g%~ ——1+2$jkxjxk—+—%fjklxjxkx’+0(r4) , (A7a)

g0— %eikl.@'mxkx'"+0(r3) ,
8Y—8740(r) .

The electric and magnetic parts of the corresponding
Riemann tensor are

(A7b)
(A7c)

Rigjo=&;+ t(ﬁpijkxk-l- %(equ.@ 9; +6,~I,q-.@ 9 xXP4+0(r?),
(A8a)
Rijro=€; B +0(r) ; (A8b)

and thus &;, &, and £ j; can be expressed as follows
in terms of the Riemann tensor and its covariant gradient,
evaluated at r=0:

&;=R;gjo (A9a)
& ik =(Rigjo1x)°

=T (Ryoj0(k +Rjoro|i +Reoio ;) » (A9b)
g*?ij:%eiququO . (A9¢c)

Xiao-He Zhang at Caltech is currently studying the
mathematical details, structure, and consequences of the
iterative algorithm sketched in this appendix.
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