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Observing binary inspiral in gravitational radiation: One interferometer
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Close binary systems of compact objects with less than ten minutes remaining before coalescence
are readily identifiable sources of gravitational radiation for the United States Laser Interferometer
Gravitational-Wave Observatory (LIGO) and the French-Italian VIRGO gravitational-wave obser-
vatory. As a start toward assessing the full capabilities of the LIGO-VIRGO detector network, we
investigate the sensitivity of individual LIGO-VIRGO-like interferometers and the precision with
which they can determine the characteristics of an inspiralling binary system. Since the two inter-
ferometers of the LIGO detector share nearly the same orientation, their joint sensitivity is similar
to that of a single, more sensitive interferometer. We express our results for a single interferometer
of both initial and advanced LIGO design, and also for the LIGO detector in the limit that its two
interferometers share exactly the same orientation. We approximate the secular evolution of a binary
system as driven exclusively by its leading-order quadrupole gravitational radiation. Observations
of a binary in a single interferometer are described by four characteristic quantities: an amplitude
A, a chirp mass JH, a time T, and a phase g. We find the amplitude signal-to-noise ratio (SNR) p of
an observed binary system as a function of A and ~ for a particular orientation of the binary with
respect to the interferometer, and also the distribution of SNR's for randomly oriented binaries at a
constant distance. To assess the interferometer sensitivity, we calculate the rate at which sources are
expected to be observed and the range to which they are observable. Assuming a conservative rate
density for coalescing neutron-star binary systems of 8 x 10 yr Mpc, we find that the advanced
LIGO detector will observe approximately 69 yr with an amplitude SNR greater than 8. Of these,
approximately 7 yr will be from binaries at distances greater than 950 Mpc. We give analytic and
numerical results for the precision with which each of the characteristic quantities can be determined
by interferometer observations. For neutron-star binaries, the fractional la statistical error in the
determination of A is equal to 1/p. For p & 8, the fractional 1' error in the measurement of ~ in
the advanced LIGO detectors is less than 2 x 10, a phenomenal precision. The characteristic time
is related to the moment when coalescence occurs, and can be measured in the advanced detectors
with a lo uncertainty of less than 3 x 10 s (assuming p & 8). We also explore the sensitivity
of these results to a tunable parameter in the interferometer design (the recycling frequency). The
optimum choice of the parameter is dependent on the goal of the observations, e.g. , maximizing
the rate of detections or maximizing the precision of measurement. We determine the optimum
parameter values for these two cases. The calculations leading to the SNR and the precision of
measurement assume that the interferometer observations extend over only the last several minutes
of binary inspiral, during which time the orbital frequency increases from approximately 5 Hz to
500 Hz. We examine the sensitivity of our results to the elapsed time of the observation and show
that observations of longer duration lead to very little improvement in the SNR or the precision of
measurement.
PACS number(s): 04.80.+z, 04.30.+x, 97.60.Jd, 97.80.Af

I. INTRODUCTION AND MOTIVATION

Both the United States Laser Interferometer
Gravitational-Wave Observatory (LIGO [1, 2]) and the
French-Italian VIRGO gravitational-wave observatory [3]
are expected to begin operation in the late 1990s. Inspi-
ralling binary systems of compact objects, either neutron
stars or stellar mass black holes with orbital frequencies
ranging from 5 s ~ to 500 s, are currently regarded as
the most certain observable source for these detectors:
the density of sources [4, 5] suggest event rates of several
per year and the radiation they emit can be calculated

unambiguously [6—12]. In support of the LIGO-VIRGO
observational effort, theoreticians must combine refined
calculations of the radiation from binary inspiral with the
anticipated detector properties to deduce the instrument
sensitivity. These calculations will, in turn, play an im-
portant role in the final design and ultimate use of the
instruments. In this paper, we begin a detailed analysis
of binary inspiral as a source of gravitational radiation
for a LIGO-VIRGO-like interferometric detector.

Our goal in this work is to estimate the sensitivity of
LIGO-VIRGO-like interferometers and the LIGO detec-
tor by determining the rate at which inspiralling binary
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systems can be detected, the range to which they can be
observed, and the precision with which they can be char-
acterized in a single interferometer. We also explore the
compromises that must be made as different questions
are asked of the observations. The optimal design and
operation of these interferometers depends on a detailed
understanding of the nature of the detector response to
the radiation, the detector noise power spectral density
(PSD), and the questions the observation is meant to re
solve. For example, we show in Sec. V that the goal
of observing as many sources as possible (without nec-
essarily being able to characterize them precisely) leads
to a different optimal interferometer con6guration than
the goal of characterizing observed sources as precisely as
possible (while allowing that weak sources may be missed
entirely) .

The ultimate goal of our assessment of binary inspi-
ral is to determine the ability of a single interferometer
(or a network of such interferometers) to (1) detect the
gravitational radiation from the last few minutes of in-
spiral of a binary neutron-star or black-hole system, and
(2) measure the parameters describing the detected bi-
nary system from the observed gravitational radiation.
By detection we mean the determination of the presence
or absence of a signal characteristic of an inspiralling bi-
nary system in the output of a detector, irrespective of
the particular parameters that might characterize the ob-
served binary system. By measurement we mean the de-
termination of the parameters that characterize the sig-
nal presumed to be present in the detector output. In a
real detector noise can mask or distort a signal present in
the detector output; alternatively, it can conspire to ap-
pear as a signal characteristic of a binary system. Conse-
quently, any conclusion we draw from observations (e.g. ,
that we have detected an inspiralling binary system) is
associated with a probability that characterizes our cer-
tainty in its validity.

As a practical matter, reliable detection of gravita-
tional radiation will initially require coincident observa-
tion between two or more interferometers so that non-
Gaussian noise events can be differentiated from gravi-
tational radiation signals. When completed, the LIGO
detector will consist of two interferometers: one in Han-
ford, Washington and one in Livingston, Louisiana [2].
The relative orientation of the two interferometers has
been chosen to maximize their sensitivity to a single po-
larization state of the gravitational radiation impinging
on the Earthi [13];consequently, the two interferometers
act together like a single interferometer whose sensitiv-
ity will be greater than that of either of its components.
This analogy is not exact: combining the interferome-
ters in this way ignores the different arrival times of the

While primarily sensitive to a single polarization state of
the radiation field, LIGO will, with more limited sensitivity,
be capable of observing both polarizations simultaneously. In
a subsequent paper we wil1 take the exact detector orienta-
tions into account in our analysis.

signal at the two distinct interferometers. Nevertheless,
our single-detector analysis is directly relevant to the ac-
tual LIGO configuration, and we discuss our results in
the context of (i) single LIGO-VIRGO-like interferome
ters of the proposed initial and advanced designs, and
(ii) the LIGO detector in the limit that its two indepen-
dent interferometers share exactly the same orientation
and ignoring the difference in the signal arrival times.

In principle, simultaneous observation of an inspi-
ralling binary system in three interferometers of different
orientations is sufficient to measure (among other charac-
teristics) the binary's luminosity distance dL„ its position
in the sky, and a function M that depends only on the
masses of its components and its cosmological redshift
[14, 15]. If the position is known through other observa-
tions, then W and dL, can be measured from observations
with only two interferometers of different orientations.
Observation of an inspiralling binary in a single inter-
ferometer can measure JH and a wave-form "amplitude"
A, which depends on the luminosity distance and orien-
tation of the binary with respect to the detector. Even
this limited information is of astrophysical significance,
however: from observations of the distribution of A and
M among the observed binaries one can determine the
distribution of the component masses of inspiralling bi-
nary systems, find the Hubble constant and deceleration
parameter, and test cosmological models [16].

The study of binary systems as sources of gravita-
tional radiation began in 1963 when Peters and Math-
ews [6] made the first detailed calculation of the gravita-
tional radiation luminosity from inspiralling binary sys-
tems, focusing on the leading-order quadrupole radiation
from two point particles in circular and elliptical orbits.
Clark and Eardley [17] explored how gravitational radia-
tion (among other effects) drives the orbital evolution of
binary systems. Clark [18] suggested inspiralling binary
systems as an important source of gravitational radiation
for modern interferometric detectors; however, he con-
sidered only the burst of radiation from the coalescence
event itself. Thorne recognized the importance of the
gravitational radiation from the final few minutes of in
spiral. Since 1987 a number of investigators have worked
with increasing sophistication on problems related to the
observation of inspiralling binaries in interferometric de-
tectors. Some have focused on understanding and re-
fining interferometer detector technology [19—24], others
have focused on the data analysis problems of detect-
ing or determining the characteristics of a binary system
from the radiation [25—30], and still others have focused
on refining our understanding of the gravitational radia-
tion waveform from these systems [7—12, 31—33] or their
rate of occurrence in the Universe [4, 5].

The remainder of this paper is organized as follows.
In Sec. II we review how the precision with which the
parametrization of a signal, observed in a noisy detector,
is determined. In Sec. III, we apply these techniques
to the particular problem of ending the precision with
which the parameters of an inspiralling binary system can
be measured. These results depend only on the detector
noise power spectral density (PSD) and not on the type of
detector (e.g. , interferometer or bar). In Sec. IV we apply
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the results of Sec. III to both the initial and advanced
proposed LIGO-VIRGO-like interferometers. We discuss
the astrophysical implications of these results in Sec. V
and present our conclusions in Sec. VI.

II. MEASUREMENT AND UNCERTAINTY

In this section we review the techniques we use to de-
termine the statistical uncertainties in observations of bi-
nary inspiral. A complete discussion is found in Finn
[34]. The techniques developed there are closely related
to those associated with signal analysis by optimal filter-
ing. For more information on optimal filtering and sig-
nal analysis we direct the reader to Oppenheim, Willsky,
and Young [35], the review by Davis [36] and references
therein, Wainstein and Zubakov [37], and Hancock and
Wintz [38].

A. Introduction

Consider a deterministic (i.e, not stochastic) source of
gravitational radiation (e.g. , an inspiralling binary sys-
tem), and a detector (e.g. , a laser interferometer). We
write the response of the detector to the radiation as a
superposition of noise n(t) and signal m(t; p), where p is
a minimal set of parameters that uniquely characterizes
the detector response (absent the noise) to the radiation
for the entire duration of the observation (in Sec. III we
show that for an inspiralling binary system observed by
a single interferometric detector p is a four-dimensional
vector). Let the source of radiation be characterized by
p. In analyzing the output of the detector, we have two
goals: (I) to determine whether a signal is present in the
detector output, and (2) to find the precision with which
we can determine P (assuming a signal is present).

B. The probability volumes V(P)

We characterize the observed output of our detector as
a time series g(t), which is a superposition of noise n(t)
and (perhaps) a signal m(t; p):

n(t) + m(t; p, ) signal present,
n(t) signal absent. (2.1)

The parameter P is fixed but unknown, and we assume
the noise is drawn from a stationary process. The prob-
ability density that a signal with parametrization p is
present in the detector output g(t) is

Owing to the detector noise, we cannot determine with
certainty either the presence of a signal or (assuming it
present) p. Instead, we find the probability that the
detector output is consistent with the presence of a sig-
nal, and represent our uncertainty in p by a set of vol-
umes V(P) in parameter space, such that p is in V(P)
with probability P. The volumes V (P) are a measure of
the sensitivity of the detector. Throughout this section,
we will assume that we have determined that a signal is
present so that the probability P associated with V(P)
is a conditional probability. In a later paper, we will dis-
cuss the determination of the probability that a signal of
the form m(t; p) is present in the detector output.

Each observed signal is immersed in its own realization
of the detector noise; consequently we cannot know in
advance of an observation what the volumes V(P) will
look like. We can, however, determine what the most
likely volumes are for a given observation, and that is
what we do here. In this section we review briefly the
procedures used to find the most likely volumes V(P).
These procedures are developed in Finn [34], and we refer
the interested reader there for more information.

(2.2)

where

P(pig) —= the conditional probability that a signal characterized by p is present given the detector output g(t)
A(S )

A+ P(0)/P(m) '

P(0)—:the a priori probability that the signal is absent,

P(m) =the a priori probability that the signal m(p) (for undetermined p) is present,

d p A(p),

A(&) —= p(p) p [2 (g (p)) —( (p), (p))],

p(p) = the a priori probability density that the signal parametrization is p,

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

(r, s) —= „ r(f)'(f)
~h(lfl)

' (2.3f)

dt e' *~'r(t), (2.3g)

S~(f)—:one-sided detector noise power spectral density (PSD). (2.3h)
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p' = 2 (m(C ) m(P)) . (2.4)

Assuming that A(p) is smooth and that its global maxi-
mum is a local extremum, p satisfies

2 mp, —mp, ,
™

p + p,
Pj Pj

= —2 n, p . 25

The likelihood ratio A [Eq. (2.3c)) is proportional to the
a posteriori probability that a signal is present in the
observed g(t). When that probability exceeds a given
threshold we assume a signal is present and try to de-
termine p, . We characterize an observation of g(t) in
terms of the mode (i.e. , the maximum) of the distribu-
tion P(ply), denoted P. The mode of P(pJ g) is also the
mode of the odd8 ratio A(p). In terms of p, the observa-
tion's signal-to-noise ratio (SNR) p2 isz

that the noise is normal these averages can be evaluated
using the ergodic theorem (cf. Finn [34 for more details).
In terms of C;z (i.e., the inverse of C,. ), the joint distri-
bution of the v, is given by the probability density

exp —
2 Q, C,~v, v~
1

- 1/2'
(2~)"det IIC,, 'll

(2.8)

This is also the joint distribution of the quantities that
appear on the left-hand side of Eq. (2.5). In Finn [34]
it was stated that for an observation characterized by gs,
the probability volumes V(P) are given implicitly by

Kz )) C,, 2 m(p) —m(p),
™

(P) + (p)
Pi pi

x 2 m(p) ™(p,), (p,) + (p)
Bm Bln p

Pj Pj
(2.9)

We assume that the noise n(t) is a normal random vari-
able with zero mean; consequently, so are each of the
(n, Bm/Bpz)'s on the right-hand side of Eq. (2.5). De-
note these random variables v, :

where

C,~ v, v~ &K~

exp —
2 P, C,zv;v~
1

dN
- 1/2

(2vr) det llC, 'll
(2.10)

&i:2 &r p (2.6)

Since v; are normal, their joint distribution is a multi-
variate Gaussian, characterized by the means v;, which
vanish, and the quadratic moments

and p E, V(P) with probability P (recall that P is condi-
tional on the assumption that a signal is in fact present
in the detector output). This is correct only tuhen A(p)
has a singLe extremum, or near P, . In the most general
case only a Monte Carlo analysis can determine the prob-
ability volumes V(P). No other results of Finn [34] are
affected by this correction.

—1=C,, (2.7b)

Here we have used an overbar to indicate an average over
all instances of the noise n(t). Since we have assumed

C. The strong signal approximation

The volumes V(P) are representations of a cumula-
tive probability distribution function. Denote the corre-
sponding probability density by P(6@ip):

P(6p,

lies)

= the conditional probability density that m is characterized by p+ 6p, given that A(p) has mode p, .

In the limit of large pz, P(6@ip) becomes sharply peaked
about p, and the determination of V(P) is greatly sim-
plified. Suppose that p2 is so large that for p, e V(P)
for all P of interest the difference m(P) —m(p) can be
linearized in bp, where

(2.12)

We then obtain, in place of Eq. (2.5),

P P.

The random variables bp are related to v by a linear
transformation:

Bing
6~' = - ) .C'~ ~~ + B (C )

Bpg
(2.14)

Note that p is quadratic in the signal strength. In the
literature SNR is often used to refer to both p and p . We
avoid this ambiguity by using either p or p as appropriate.

consequently, bp are normal with means

Bing
6s ' = —):C'~ (P)

Op~
(2.15)
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and quadratic moments

(~p; —Sp, ) (up —up) =C;. (2.16)

The probability distribution P(blip) is thus a multivari-
ate Gaussian [cf. Eq. (2.8)]:

If the validity of the linearization procedure for a par-
ticular problem is doubtful owing to the violation of any
of these conditions, then we must fall back on either
Eqs. (2.5), (2.9), and (2.10) [if A(p) has a single ex-
tremum], or a Monte Carlo analysis.

P(~pip) =
exp —

2 P, C, (6p, —6p, ) (bp~ —6'p~)
- 1/2

(2~) det IIC'311

(2.17)

Note that the matrix C,~ has now acquired a physical
meaning: in particular, we see that the variances o.2 of
bp, are

o., —= (6p, —6p, )
=C,,

and the correlation coefficients r,~ are gi.ven by

r,~—:o, o (6p; —6p, ) (6p~ —6p~)

(2.18)

OgOg
(2.19)

) (b'p, , —6p) (6p —6p ) C, = K, (2.20)

where the constant K2 is related to P by

In this sense we say that C,z is the covariance matrix of
the random variables 6p.

In the strong signal approximation, the surfaces
bounding the volume U(P) are ellipsoids defined by the
equation

III. PRECISION OF MEASUREMENT:
BINARY INSPIRAL

In this section we apply the techniques described in
Sec. II to the problem of measuring the characteristics of
an inspiralling binary system in an interferometric grav-
itational radiation detector. We determine the gravita-
tional radiation from an evolving binary system in the
quadrupole approximation and evaluate the correspond-
ing detector response. The amplitude of the response
is a function of the (unknown and unknowable) relative
orientation of the source and the detector, and we eval-
uate its mean square amplitude and a priori cumula-
tive probability distribution. We also discuss the validity
of describing binary evolution using the quadrupole ap-
proximation, arguing that while the result is certainly
not good enough for use in actual data analysis, it is
sufBcient for the purpose of exploring the precision with
which we will ultimately be able to characterize a binary
system through gravitational radiation observations in
LIGO-VIRGO-like interferometers.

The general interferometer response to the gravita-
tional radiation from an inspiralling binary system is a
sinusoid with slowly varying amplitude and frequency.
Using the stationary phase approximation, we obtain an
analytic expression for the Fourier transform of the re-
sponse. We G.nd that the SNR r02 and the covarianee ma-
trix C,~ can be expressed simply in terms of several mo-
ments of Sh (f), the inverse of the interferometer noise
PSD.

C x'x~(Kt)3
- 1/2

(2~)"det IIC'& ll
A. Parametrization of the radiation waveform

(2.21)

Finally we come to the question of when the lineariza-
tion in Eq. (2.13) is a reasonable approximation. Three
considerations enter here.

(1) The probability contours of interest (e.g. , 90%%uo)

must not involve 6p so large that the linearization of
m(p) —m(p) is a poor approximation.

(2) The probability contours of interest must not in-
volve hp, so large that for b'p 6 U(P), A(6p, + P) has
more than one extremum or inHection point.

(3) The condition number of the matrix C, must be
sufficiently small that the inverse C,~ is insensitive to the
linearization approximation in the neighborhood of p.

Recall that the relative error in bp is the condition number
times the relative error in C,.. : for a large condition number,
small errors in C, introduced by the linearization approxi-
mation can result in large errors in bp (cf. Golub aud Van
Loan [39]).

e„"=e„,a 8

e =e„xnI.8
(3.la)

(3.1b)

In order to express the response of a single interferom-
eter to the gravitational radiation from a binary system
(or any source), we define two coordinate systems: the
source coordinate system and the radiation coordinate
system. The binary system is most simply described in
the source coordinate system. The es axis of this coor-
dinate system is along the binary system's angular mo-
mentum. We choose the axes e and e„of the source
coordinate system to make the expression of the radia-
tion directed toward the interferometer simple: the e~
axis is chosen so that the unit vector nI in the direction
of the interferometer is in the e h. e, plane and in the
positive eg direction (if the interferometer is along the
polar axis, then there is no preferred direction for the e~
axis

The radiation coordinate system has its e+ axis in the
direction nI, and its e and e„axes are projections of
the e~ and e„coordinate axes normal to nI.
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In the radiation coordinate system, the radiation propa-
gating toward the interferometer is described by

The qvadrupole wav cform

h = h+e+ + hxex

where

R@ R Rm R
+ x x y y &

R@ R+ RN R

(3.2)

(3.3a)

(3.3b)

In the quadrupole approximation,

h+ =2 (1+ cos i) (7riU(f) ~ cos(C + Cr),
L

hx =4 cosi (vrWf) ~ sin(C'+ 4),
L

where

(3.4a)

(3.4b)

dL =—luminosity distance to binary,
cosi = nI e8

i = inclination angle of orbital angular momentum to line of sight toward the interferometer,
M—:(chirp mass) = (1 + z) p, ~ M ~,

(3.5a)
(3.5b)

(3.5c)

(3.5d)

5/8

q5M)

1 BC

270 Bt
5

vrM 256 T —t (3.5f)

8. The interferometer response

The response of an interferometer to the gravitational
radiation field is a linear combination of h+ and hx.

m = F+h~+ Fxhx, (3.6)

where the antenna patterns F+ and F„depend on the
orientation of the interferometer with respect to the bi-
nary system [40]. We make no assumptions regarding the
relative orientation of the interferometer and the binary;
consequently, the general interferometer response is

m(t; A, M, g, T) =—AM (~fM) cos (4+ g), (3 7)

where Q is a constant [distinct from @ in Eqs. (3.4a) and
(3.4b)], and C and f are given above in equations (3.5e)
and (3.5f). We will return in Sec. IIIE to discuss how A
depends on the orientation angles through E+ and F„.

8. Radiation reaction and the quadrupole
approximation

4 is the phase of the binary system at t = T, T is the
Newtonian "moment of coalescence, " z is the cosmolog-
ical redshift of the binary system, and M and p, are the
binary system's total and reduced mass [6,40]. The grav-
itational radiation frequency f is twice the system s or-
bital frequency.

tion reaction is the most important factor in determin-
ing the evolution of a binary system's orbit [31,32]. In
Sec. III A 1, where we describe the evolution of the binary
system's orbit, only backreaction owing to the leading-
order quadrupole radiation is taken into account [6, 40].
This approximation neglects higher-order effects (in both
v/c and M/r) that contribute to the gravitational radi-
ation luminosity and, consequently, the evolution of f.
This has serious ramifications for the construction of the
model detector response [41].

The detector response to binary inspiral is a sinusoid of
slowly varying amplitude and frequency. The determina-
tion of the characteristics of the binary system is equiv-
alent to finding the "template" response that is most
closely correlated to the detector response. If the phase
of the template drifts from that of the signal by as lit-
tle as vr radians over the course of the observations, then
the correlation will be insignificant. Neutron-star binary
inspiral observations in LIGO-VIRGO-like interferome-
ters will last for on order 2m x 104 rad in phase; conse-
quently, the phase advance can be determined to better
than 1 part in 104. The errors we have made in our tem-
plate m(p) [Eq. (3.7)] by neglecting the post-Newtonian
contributions to the evolution of the binary system lead
to phase differences significantly greater than 2' radians
over 104 cycles observed. Consequently, the waveform
model used in actual data analysis must be more accu-

LIGO-VIRGO-like interferometers are most sensitive
to gravitational radiation with frequencies in the range
30—1000 Hz. This corresponds to binary orbital frequen-
cies of 15—500 Hz. In this regime gravitational radia- Here and henceforth we adopt units where G = c = 1.
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rate than that given by the quadrupole approximation
[42, 41].s

Nevertheless, for the particular purpose of exploring
our ability to detect and characterize binary systems by
their gravitational radiation signature, we believe the
quadrupole approximation wave form is a useful substi-
tute for a more accurate wave form. The determination of
the anticipated sensitivity of a LIGO-VIRGO-like inter-
ferometer to binary inspiral depends on pz and C,~, and
we expect that the quadrupole approximation provides
good lower bounds on these. The predominant observ-
able eKect of the inclusion of post-Newtonian corrections
is to change the rate that the wave frequency f advances,
thus changing the elapsed phase of the wave over the pe-
riod of the observation. The SNR p depends approxi-
mately on the elapsed phase and the corrections, while
large compared to 2~, change this by only a small fraction
of the total. Similarly, in the quadrupole approximation
the rate at which f advances depends exclusively on M
[cf. Eq. (3.5f)]; consequently, to the extent that the cor-
rections to the quadrupole formula depend on character-
istics of the binary other than JH (e.g. , component masses

I

and spins) these characteristics are observable and affect
the precision with which M can be measured. In this
way we expect that the use of a more accurate wave form
in our analysis will increase the estimated o.~ but have
little eEect on our estimates of e~, oy, and oT made us-
ing the quadrupole wave form and corresponding binary
evolution.

B. The stationary phase approximation

k(t) = A(t) cos O(t), (3 S)

where BC /Bt is a monotonically increasing function of t,
the stationary phase approximation to the Fourier trans-
form k(f) is

In order to evaluate the SNR pz [Eq. (2.4)] and the co-
variance matrix C,~ [Eq. (2.7b)] we must find the Fourier
transform m of m [Eq. (3.7)]. We approximate m using
the method of stationary phase. Given a real function of
the form

k(f) = dt k(t) e2mt ft

exp i 2' T —C T +~4 for f)0,
for f(0,

(3.9a)

(3.9b)

where
I

two relations are equivalent to the single condition

2 (t)
1 BC

(3.10)
T —t /37r') 2561

(3.12)

The validity of the approximation rests on the assump-
tion that the amplitude A and the angular frequency
BC/Bt change slowly over a period:

or, alternatively,

S i"'
~ 2563 ' =37 (3.13)

Bln A/Bt

BC /Bt
(3.11a) For binary systems that will be observable by LIGO-

VIRGO-like interferometers,

Bz@/Bt2

(ae)s~)'
(3.lib)

For the interferometer response m given in Eq. (3.7) these
I

4 f ~ 1
(3.14)

consequently, the stationary phase approximation is a
good one for our purposes. We thus have

(f) AM gag (mfM) exp (i 2vfT + ~~8 (vrfM) —P + — )
m'( —f)

for f)0,
for f (0. (3.15)

Cutler, Finn, Poisson, and Sussman [42] have shown that successive post-Newtonian approximations to the evolution and
wave form converge very slowly upon the fully relativistic solution. Consequently, it may require an impractically high-order
post-Newtonian expansion to predict correctly the advance of the phase over the course of the LIGO-VIRGO observations.
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C. The signal-to-noise ratio as fh, —+ oo; thus, we have

Now suppose that we have analyzed the output g(t) of
an interferometer for the signal m and found that the like-
lihood function is maximized for the parametrization (A,
M, g, T). The SNR p2 is then given by [cf. Eq. (2.4)]

f7/s = df f'/'~h, (f) (3.18)

We discuss our choice of low-frequency cutoff fi in
Sec. IVA6 and again in Sec. VD.

p = 2 (m(P), m(p))
~ -5/3

/
A M f7/3, (3.16) D. The covariance matrix

where, if we assume that we have access to g(t) for all t,

f7/s =
OO - —1

df f'/'~ (f) (3.17)

In practice, of course, data analysis is limited to a finite
length sample of the interferometer output. During this
limited interval, the signal "f."equency" f [Eq. (3.5f)] of
an inspiralling binary system ranges from ft to fh. We
assume that the minimum of S~(f) occurs in this interval
and not too near the end points. Then, just as the slowly
varying amplitude and frequency of m permitted us to
estimate m( f) using the stationary phase approximation,
so it allows us to approximate p2 for a finite duration
observation by replacing the lower and upper limits in
the integral expression for f7/3 [Eq. (3.18)] by fi and fh
The lower bound f~ is determined by the duration of the
data stream being analyzed while the upper bound fh, is
determined by the coalescence of the binary components.
We further assume that f7/3 does not change significantly

Turn now to the calculation of the covariance matrix
C,z [cf. Eq. (2.7b)]. Instead of a parametrization in terms
of A and JH, it is more convenient to introduce q and g
defined by

A(1+ rl)
—= A,

M(1+() —= M,

(3.19a)

(3.19b)

—1
fp —= f7/s df f ~h, (f) (3.20)

To express C;~, only f/s for P E (17/3, 4, 3, 4/3, 1/3) are
needed. In terms of these moments,

where A and M are the modes of the observed distribu-
tion of A and M.

Given our expression for m(f), we can evaluate all of
the elements of the symmetric matrix C, in terms of the

frequency moments f& defined by

1 p2
25

y
9 f&&/3

36 + 4096 y ylo/3
5 f4

12s( ~) /

1

5~ f&
s4 (~m)'"

2xf4/3—
(2vr) f i/s )

where the indices are ordered il, (, Q, and T. We have inverted Eq. (3.21) to find C,~ and so the variances and
correlation coefficients describing the distributions of q, (, Q, and T [cf. Eqs. (2.18) and (2.19)]. The variances are

2

0
2

10/3
&+

&& (~~) (Xiii f4is) P (3.22a)

2
2

2

(3.22b)

—2f17/3 f1/3 f3

P
—2f i7/3

—f4
4vr24 p2

and the correlation coefBcients are

(3.22c)

(3.22cl)
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Tgg = TAM
10/3

64 4/3
—

1/3

10/3 /
~+ + rtog~ (77~) (fl/3 f4/3) (fl/3 f4/3) (+~)

Tnt =TAV
5 3

1/3 4 4/3 3

1/2 ~

10/3
9E + 4096 (77Art) (fl/3 f4/3) (f17/3 f1/3 f3)

TgT —T+z'
5/3

64 4 4/3

(
33 1/2 )

9/3 + 4096 (77&I) (f1/3
—f4/3) (f,l/3

—f4)

(3.23a)

(3.23b)

(3.23c)

f4/3f3 fl/lf4)
—2 —2

- 1/2~

(f1/3 f4/3 f17/3 f1/3 f3

T(T =T~T

fs f4f4/—3

1/3 4/3 17/3 4

f17/3f 4/3 f4f3
—2 — —2 1 2'

17/3 1/3 3 17/3 4

where

(fl/3 f4/3) f17/3 fl/3f4 + ( f474/3 fl) f3 ) 0

(3.23d)

(3.23e)

(3.23f)

(3.24)

E. Properties of A.

Despite the fact that we cannot measure the orienta-
tion angles relating the interferometer to the source, we
still need them in order to assess the interferometer's sen-
sitivity. Recalling that

m=R:h.

For our interferometric detector

1R:——(L Im/ —mI3 m) .
2

(3.26)

(3.27)

m = F+h++ Fxh, x, (3.25) (5) Assume that axis eg makes an angle g with the
axis l, i.e. ,

we express F+ and Fx according to the following conven-
tion.

(1) Assume that the interferometer arms are the same
length and that they meet in right angles.

(2) Define a right-handed coordinate system with one
interferometer arm along the x axis and the other along
the y axis. Denote the unit vector in the direction of the
2: arm by l and the unit vector in the direction of the y
arm by m.

(3) Let the position of a source in the sky be given by
the polar angle 8 and the azimuthal angle P, and denote
the unit vector pointing toward the source by ng (i.e. ,
—nI).

(4) The interferometer responds linearly to the radia-
tion field h, so its response m can be represented by a
tensor R such that

e = l cosg+ msin(. (3.28)

With these conventions, the antenna patterns are given
by [4O]

F+ =R:e+

=1= —cos 2( (1 + cos 8) cos 2P —sin 2( cos 8 sin 2P,2

2
(3.29a)

Fx ——R:ex

=1.= —sin 2g (1 + cos 8) cos 2P + cos 2( cos 8 sin 2P,2

2
(3.29b)
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and the amplitude A may be written

, F' (1+cos i) +4F„cos i (3.30)

It is convenient to denote the angular dependence of A2

by Os:

0 = 4 F+ (1+cos i) +4F„cos i2 2
(3.31)

The range of 0 is 0 & 02 ( 16.
The SNR p and covariance matrix C,~ [Eqs. (2.4) and

(2.7b)] both depend on Az, which is in turn a function
of the (unknown) relative orientation of the source and
interferometer through 02. In order to evaluate the ex-
pected p2 (or the expected C,~) of a source at a given
distance dL, we need to know some properties of the prob-
ability distribution of 0 .

Since 02 depends on the angles 0, (t, i, and ( [cf.,
Eq. (3.31)], the a priori distribution of 0 depends on
the a priori distribution of these angles. These distri-
butions are all known: in particular, cos 8 and cos i are
uniformly distributed over the range [

—1, 1] and (t and
( are uniformly distributed over the range [0, 2m). Mak-
ing use of the definitions of F+ and F&& [Eqs. (3.29a) and
(3.29b)], we find that the mean square of 0 is

2=—64
25

(3.32)

IV. APPLICATION TO LIGO

In Sec. III we found expressions for the SNR, the vari-
ance, and correlation coefficients corresponding to the
detection of a signal characterized by A, M, Q, and T.
In this section we join those expressions with the de-
sign characteristics of LIGO-VIRGO-like interferometers
to obtain estimates for the sensitivity of a realistic inter-
ferometric detector to inspiralling binaries.

A. Noise and the LIGO interferometers

The characteristics of the interferometers enter our
analysis solely through the strain noise PSD Sh, (f) The.

The distribution of Oz is not symmetric, however: in
fact, its mode is zero and larger values of 02 are much
less likely to occur than smaller ones. We have deter-
mined the cumulative distribution function of Oz using a
Monte Carlo analysis; we give the percentiles of the dis-
tribution in Table I. In performing these calculations, we
used Knuth's portable random number generator [43] as
implemented by Press et aL [44] (i.e. , their RAN3). The
results in Table I are based on a sample of 107 points in
the (cos 8, cosi, P, g) parameter space. The correspond-
ing values of 02 were sorted into bins and the reported
percentiles are the rounded bin centers.

Note from Table I that significantly more than half
(i.e. , approximately 65'%%uo) of the inspiralling binary sys-
tems will have Oz less than Oz. The skew of the distribu-
tion toward smaller Oz plays a significant role when we
estimate the range of the interferometer (cf. Sec. V B).

dominant contributions to S)z(f) for the interferometer
configurations that will be used to search for inspiralling
binaries are from seismic, thermal, and photon shot noise.
In this subsection we summarize these contributions to
the overall noise PSD that we use in our calculations.

X. Photon shot noise

TABLE I. The amplitude of the gravitational radiation
wave form observed in a single detector depends on the rela-
tive orientation between the source and the detector through
the function 0 [cf. Eq. (3.31)]. The orientation angles are
unknown and cannot be ascertained by observation; however,
their a priori distribution is known and consequently the a
priori distribution of the signal amplitude for binaries at a
fixed distance from the detector is also known. In this table
we give the cumulative probability distribution of e, and
also a function of P(O & x ) that arises when we evaluate
the number of sources within a given distance whose signal
amplitudes exceed a given threshold. For more details, see
Secs. III E, V A, and V B.

JQ ltz z P(e &z )

I dz zz p(ez &zz)

90.0'Fo

80.0'%%uo

75.0%%uo

70.0%%uo

60.0%%uo

50.0'Fo

40.0'Fo

30.0'%%uo

25.0%%uo

20.0%%uo

10.0%
9.0'%%uo

8.0%
7.0%
6.0%
5.0%
4.0%
3.0%
2.0'Fo

1.0'Fo

0.5%
0.4'%%uo

0.3'Fo

0.2'Fo

0.1%

0.240
0.542
0.707
0.878
1.250
1.709
2.283
3.020
3.485
4.063
6.144
6.471
6.832
7.239
7.701
8.233
8.857
9.614

10.589
11.985
13.054
13.350
13.682
14.091
14.284

2.00'Fo

6.32'%%uo

9.06Fo
12.06'%%uo

18.82'%%uo

27.11%
36.98'%%uo

48.29%
54.54'%%uo

61 37%%uo.
79.48'Fo

81.59'Fo

83.75Fo
85.94'%%uo

88.18'
90.42'Fo

92.64%
94.82%
96.91'
98.77Fo
99.52'Fo

99.65%
99.77'Fo

99.87%
99.95%

At high frequencies Sh, (f) is dominated by the photon
shot noise. The shot noise depends on the interferometer
arm lengths, laser power and wavelength, mirror refiec-
tivities and configuration in a complicated fashion. In all
of our calculations we have assumed that LIGO-VIRGO
will be equipped with Fabrey-Perot cavity interferom-
eters, and we have used the analysis of Krolak, Lobo,
and Meers [28] [cf. their Eqs. (2.11)—(2.22)] to describe
the photon shot noise. This analysis is general enough
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to encompass nonrecycling, standard recycling, and dual
recycling interferometers. Except in Sec. IVB we always
assume that the instrumentation makes use of standard
recycling techniques. For standard recycling, the pho-
ton shot noise is given approximately by Thorne [40],
Eq. (117c), or Krolak, Lobo, and Meers [28], Eq. (3.5):

(4 1)

where A2 describes the mirror losses, Io is the laser
power, g is the quantum eKciency of the photodetector,
A is the laser wavelength, I is the length of interferometer
arms, and f, is the recycling "knee" frequency.

The simplest way in which the observer can change the
noise characteristics of the LIGO-VIRGO instrumenta-
tion is by changing the recycling knee frequency f, The.
general trend is that as the recycling frequency increases
the bandwidth increases while the sensitivity across the
bandwidth decreases ([40], Fig. 9.13).

8. Thermal noise

(4.2)

(note that we use T for both the temperature and the
Newtonian "moment of coalescence;" nevertheless, the
meaning of the symbol in any given context should be
clear). Each arm of the interferometer has a pendulum
degree of freedom at each end and the noise from each de-
gree of freedom is independent; thus, the total noise PSD
is a factor of 4 greater than this [note that Dhurandhar,
Krolak, and Lobo [22], Eq. (2.10)] neglect this factor of 4
in their analysis and have several typographical errors in
their formulas). The total thermal suspension noise PSD
is given by

~h""(f) = 4~i", "'(f) (4.3)

The primary dissipative force acting on the pendulum
may not be friction, however: it has been suggested [23]
that the dissipation is due instead to a phase lag between
the stress and the strain in the pendulum suspension.
If this is the case, then the noise PSD is different than
that given above. This is not an issue for the initial
interferometers, but will be for the advanced ones [13].
The nature of the dissipation is far from settled, and in

At lower frequencies, off-resonance thermal excitations
of the test mass suspensions and internal modes of the
pendulum masses either dominate or provide important
contributions to the noise. We approximate the suspen-
sion noise by focusing only on the pendulum mode (ignor-
ing both torsional and violin modes). If the dissipative
force in the pendulum suspension is due to friction, then
the strain PSD of a single test mass m with resonant
frequency fo and quality factor Qo at temperature T is
given by

gpend (f)
B fO

27rsmQoL2 (fz —fo2) + (ffo/Qo)

the absence of a consensus we have used the form given
in Eq. (4.3).

Off-resonance thermal excitations of the vibrational
modes of the test masses will also be a significant source
of noise in the LIGO-VIRGO interferometers. Here we
consider only the fundamental vibrational mode of each
test mass. The contribution to the noise PSD has the
same form as the thermal suspension noise S&"'~(f) (and
is subject to the same controversy), only now the reso-
nant frequency and oscillator quality that enter are those
of the test masses:

2kBTf;„t
trtQint~ (f f~~t) + (ffint/Qint)

(4.4)

8. Seismic noise

Seismic noise will dominate Sp„(f) at low frequencies.
Saulson [45] has surveyed the literature on the seismic
displacement noise PSD S (f) and finds that it is roughly
proportional to f 4 in the range 1/10Hz & f & 10Hz.
Consequently, if the LIGO-VIRGO test mass suspensions
were coupled directly to the Earth, then

g 4
gseismic

(fii —f') + (ffo/Qo)'
(4.5)

The proportionality constant So has units of Hz . This

where fo is the pendulum mode frequency, Qo is pendu-
lum quality, and So is a proportionality constant with
units of Hz . Note that at frequencies above the pendu-
lum frequency fo the seismic strain noise is proportional
to f s while below fo it is proportional to f 4.

In the actual LIGO-VIRGO interferometers, the pen-
dulum suspensions will be isolated from the Earth by
a mechanical circuit that is a series of several highly
damped oscillators [46, 47]. Each oscillator in this se-
ries circuit will introduce four poles in the strain noise
PSD near the pendulum frequency; consequently, the ac-
tual seismic noise contribution will be much steeper than
f s at frequencies greater than fo and much more com-
plicated near the resonant frequencies of the mechanical
circuit. It is proposed that seismic isolation in the initial
interferometers be provided by a five-stage circuit (where
the final stage of isolation is the pendulum suspension it-
self) ([46], Sec. V 3 b and Appendix D); consequently, for
frequencies much greater than fo the seismic strain noise
PSD is expected to be proportional to f 24 Nearer the.
resonant frequencies of the isolation circuit the depen-
dence is quite complicated as the poles in the response
function are not at zero frequency, but at complex fre-
quencies with real parts near 1 Hz. The strain noise PSD
below the resonant frequencies of the isolation circuit re-
mains proportional to the displacement noise PSD S~(f)

In our calculations we use the following crude estimate
for the seismic strain noise PSD:

g —4
gseismic(f )

Of (4.6)
(f2 f2)10'
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estimate scales correctly with frequency above and below
fp, though it fails near fp T. his failure is unimportant
since (except in Sec. VD) we assume that ft ) fp (the
choice of cutoff fi is discussed in Sec. IVA6).

The amplitude of the noise (as reflected by the pro-

portionality constant Sp) depends on the detailed nature
of the seismic isolation circuit and the properties of the
seismic displacement noise at the interferometer site. The
LIGO design goals for the initial and advanced interfer-
ometers are [46]

Sh"' "(40Hz) = Sh"'~(40Hz) + Sh" (40Hz)

Si,'" "(10Hz) = S~"'~(10Hz) + Sh" (10Hz)

(initial interferorneters),

(advanced inter ferometers) .

(4.7a)

(4.7b)

We fix Sp by these relationships. Where we discuss the
advanced LIGO detectors, we use the same condition on
the seismic noise as for the advanced interferometers.

Quantum noise

Sequent (f)
m (27rf) Lz

where m is the mass of the LIGO pendulum bobs.

(4.8)

In addition to the primary noise sources discussed
above, we have also included a contribution whose ori-
gin is quantum mechanical and rooted in the Heisenberg
uncertainty principle. When we observe a signal of fre-
quency f in an interferometer, we are measuring the pe-
riodic motion of the end masses at that frequency. Since
the motion is periodic, this is equivalent to a simulta-
neous measurement of the momentum and localization
of the end masses, and the precision with which we can
make this measurement is subject to the usual quantum
mechanical limits. In our calculations, we use the form
of the quantum noise given by Thorne [[40], Eq. (121)]:

S„(f)= S„""(f)+ S„'"'(f)+ S„'""(f)
+Sseisnuc (f) + Squint (f) (4.9)

As a companion to Table II and as a graphical illustra-
tion of how all of the noise sources discussed above act
in concert to determine an interferometer's noise charac-
teristics, we show our approximation to the anticipated
Sh, (f) for both the initial (Fig. 1) and advanced (Fig. 2)
instrumentation. The contributions to Sr, (f) from each
of the influences discussed above are shown as dashed
lines and Sh(f) is shown as a solid line. Both figures
show interferometers configured to operate in a standard
recycling mode. In Fig. 1, corresponding to the initial in-
terferometers, the recycling frequency f, is 300 Hz, while
in Fig. 2 (corresponding to the advanced interferometer
design) it is 100 Hz.

advanced instrumentation. These estimates have been
culled from the literature [1,2], the LIGO proposal [46],
and personal communication with members of the LIGO
project [13,48]. In terms of the noise sources discussed
in the previous subsections, the noise PSD Sr, (f) we use
in our calculations is

$. Noise source summary b. C'hoosing the lour-frequency cutoff fi

In Table II we give the instrument characteristics we
have assumed in our calculations. Two sets of values are
given, corresponding to estimates for LIGO initial and

The elements of the covariance matrix C,~ depend on
the moments f7/3 fi7/3 f4 f3 f4/3 and fi/3 In turn, .
these depend on Sh, (f) and the low-frequency cutoff ft

TABLE II. The sensitivity of LIGO depends in large measure on the details of the instrumen-
tation, and this is expected to evolve over the lifetime of the physical plant. We consider the two
extremes of detector technology that have been cited by the LIGO team in their reports [1, 2):
the instrumentation that is expected to be available when the facilities first come on line (initial
interferometers), and that expected to be available much later (advanced interferometers).

Initial
interferometers

Advanced
interferometers

Temperature (T)
Pendulum frequency (fp)
Suspension quality (Qp)
End mass (m)
End mass fundamental mode (f;„t)
End mass quality (Q;„t)
EfFective laser power (Iprl)
Laser wavelength (A)
Mirror losses (A )

300 K
1 Hz
10
10 kg
23 kHz
10'
5W
5139 A
5x10

300 K
1 Hz
109
1000 kg
5 kHz
10'
60 W
5139 A
2x10 '
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FIG. 2. The noise power spectral density (PSD) Sh(f) for
the (anticipated) advanced LIGO interferometers configured
for standard recycling with a knee frequency of 100 Hz. The
solid line shows the total PSD, while the dashed lines show
the important physical limits and environmental influences
that contribute to the total. In the limit that the two LIGO
interferometers have identical orientations and we ignore the
information available owing to gravitational-wave burst ar-
rival time differences, the (advanced design) LIGO detector
noise PSD Sh(f) is 1/2 the value shown here. For more detail,
see Sec. IVA and Table II.

FIG. 1. The noise power spectral density (PSD) Sq(f)
for the (anticipated) initial LIGO interferometers configured
for standard recycling with a knee frequency of 300 Hz. The
solid line shows the total PSD, while the dashed lines show
the important physical limits and environmental influences
that contribute to the total. For more detail, see Sec. IVA
and Table II.

[see Eqs. (3.18) and (3.20)]. Our calculations of these
moments have assumed a low-frequency cutoff of 10 Hz,
corresponding to the last several minutes in the inspiral
of a binary neutron-star system. In Table III we give the
frequency moments f7~s, fiz~s, f4, fs, f4&s, and fi/3 for
two cases of interest.

B. Signal-to-noise ratio

As discussed in Sec. IIB, we decide whether or not a
signal is present in the output of the detector by compar-
ing the likelihood ratio A to a predetermined threshold.
In this regard, the SNR p is an acceptable surrogate for
A; i.e. , we can choose a threshold p~o (which may be a
function of p) to compare with p~. Then, if ps ) pro we
assert the presence of a signal while if p & po we con-
clude that the detector output is only noise. The choice
of threshold is a delicate matter: on the one hand we
want a high threshold to minimize the probability that
we misidentify noise as signal; on the other hand, we
want a low threshold to minimize the probability that
we misidentify a real signal as noise. We will consider
the proper choice of the threshold p02 in a later paper;
now, however, we assume only that the threshold de-
pends weakly on the detection strategy and p.

The amplitude SNR p may be expressed

7. The IISO detector

=8
i i iE1.2Mop (OMy, )~

~

~

~ ~(17.0 Mpc/dr, ) initial interferometers
x ( (308 Mpc/dL, ) advanced interferometers

, (436 Mpc/dl. ) advanced LIGO detector,
(4.10)

The two LIGO interferometers, though separated by
several thousand miles, share nearly the same orienta-
tion in space: the planes defined by the detector arms
are nearly parallel, and the arms themselves are nearly
parallel. Consequently the network acts like a single in-
terferometer of greater sensitivity than either of its com-
ponents. If the noise in the two component interferome-
ters of the LIGO detector is uncorrelated and described
by S& (f), then the effective PSD of the more sensi-(0)

tive single interferometer is Sh, (f) = S& (f)/2 Conse-.
quently, the effective PSD for the LIGO detector in the
limit that the interferometers share the same orientation
is also given by Fig. 2, but with the scale reduced by a
factor of 2 / . In making this approximation we are ig-
noring the diKerences in arrival time of the gravitational
radiation signal at the two interferometers. In the fol-
lowing sections when we refer to the LIGO detector (as
opposed to a LIGO-VIRGO-like interferometer) we are
actually referring to a single interferometer whose noise
PSD is 1/2 that of the advanced interferometer design.
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TABLE III. The signal-to-noise ratio, the variances, and the correlation coeKcients all depend
on the characteristics of the interferometer through the moments of its inverse noise power spectral
density (cf. Sec. IV A). Here we give those moments for the initial and advanced LIGO instrumen-
tation for the two cases where the standard recycling "knee" frequency f, is 100 Hz and 500 Hz.
In both cases, the low-frequency cutoff (determined by the duration of the observation) is 10 Hz.

fc 100

Initial
interferometers

500

Advanced
interferometers

100 500

f7/3
fi./3

f4
f3
f4/3
f1/3

(H
—1/3)
—10/3)
—5/3)

(H.-'/')
(Hz)
(Hz')

5.331x 1Q42

9.540x 10
2.059x 10
3.056x 10
2.346x 10
7.765x 10

6.520x 104~

7.704x 10
1.721x10 4

2.775x 1Q

2.939x 1Q2

1.394x 105

1.747x 104'
6.758x 10
1.562x 10
6.615x 10
8.423x 10
1.248x 10

1.353x 10
8.267x 10
1.720x 10
6.741x 10
9.536x 10
2.282x 10

where

f7/3(f. fi)
f7/3(100 Hz, 10 Hz)

- i/2

(4.11a)

i /2
f7/3/5 331 x 10. 4 Hz

i/2
7/3 1.747 x 1045 Hz

1/2
f7/3/3 493 x 10. Hz

initial interferometers

advanced interferometers

advanced LIGO detector.

(4.11b)

In Fig. 3 we show F7/3 for both the initial and advanced
LIGO instrumentation. Two curves are shown: one for
the initial interferometers and one for the advanced in-
terferometers. Each curve assumes a low-frequency cutoK
fi of 10 Hz (corresponding to the last several minutes of
binary neutron-star inspiral). For the advanced instru-
mentation the detection strategy that maximizes p has
f, = 100 Hz (where F7/3 ——1), while for the initial in-
strumentation f, = 300 Hz (where I"7/3 ——1.3). These
correspond to the choice of f, in Figs. 1 and 2 showing the
detailed breakdown of Sh, (f) for the initial and advanced
inter ferometers.

Now consider the case of resonant dual recycling [19,
21, 24]. The photon shot noise in an interferometer oper-
ating in a resonant dual recycling mode is proportional
to (cf. [28], Eq. (3.7) but note that their approximate
expression has several errors; see also [19,24])

(4.12)

where Af and f„depend on the reflectivities of certain
mirrors in the experimental apparatus. This shot noise
PSD is large except in a narrow band about f„where it is
very small. The bandwidth Af and the central frequency
f„of this "notch" can be adjusted, and the size of S&d" '

in and out of the notch will vary depending on the f
and Af In comparison, .an interferometer operating in a

standard reeycling mode has a nearly constant shot noise
PSD for frequencies below the knee frequency f„with the
noise PSD increasing as f for frequencies greater than
f, [cf. Eq. (4.1) and Figs. 1 and 2]. For

~ f —f„~ & Ef,
dual recycling cuts a notch in S&~" ~. Elsewhere, S&" is
lower than that for dual recycling (assuming fo f,).
On the basis of numerical investigations of the interfer-
ometer response and the wave form of inspiralling binary
systems, Krolak, Lobo, and Meers [28] suggested that
dual recycling with f = 100 Hz and Af 6Hz is supe-
rior to standard recycling for the observation of binary
systems. Their analysis assumed that S&(f) is infinite
below 100 Hz and that only photon shot noise is impor-
tant above 100 Hz: in particular, they did not consider
the noise owing to the thermal excitations of the test
mass vibrational modes (cf. Sec. IVA2). When Sh"'(f)
is included in the analysis, then the advantage of dual
recycling in this regime is lost: the notch is "filled in" by
the thermal noise almost to the level of standard reey-
cling photon shot noise (cf. their Fig. 5 and our Figs. 1
or 2), and everywhere else the noise is much greater than
is the ease for an interferometer operated in the standard
recycling mode.

Dual recycling may still be useful at much higher fre-
quencies where the photon shot noise in a standard recy-
cling configuration is much larger than the thermal noise
(e.g. , at 1.5 kHz). Observations at such high frequen-
cies may prove useful for detecting the actual coalescence
event [42].
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dr4~JVr P p (r) & po

o = Initial interferometers
o = Advanced interferorneters

(, r21
dr 4~JVr'P

~

0' & —, I

ro

= 4~Pro dx x'P (e' »') (5.1a)

(5.1b)

where

P (02 & xz) —= the probability that 0 is greater than x,
(5.2a)

&5w'~'f», l "'
( 96+4~s

po )
5xgQ

f (Hz)

j.0
ql 2Mop qp

FIG. 3. The sensitivity of' a I IGO-like interferometer to
the gravitational radiation from a coalescing binary system
depends on the detailed characteristics of the interferometer
through several moments of the inverse of its power spectral
density (PSD) Sq(f) In par.ticular, the signal-to-noise ratio
(SNR) p depends on a moment of Sz (f). Here we show
how this moment (normalized to its ~alue at a recycling fre-
quency of 100 Hz) varies with the choice of interferometer
recycling frequency. To maximize the rate at which sources
are detected this quantity should be maximized. For more
details see Sec. IVB.

13.0 Mpe initial interferometer
x & 236 Mpc advanced interferometer

334 Mpc advanced LIGO detector,

(5.2b)
- 1/3

dxx'P (e' »') (5.2c)

[recall that we have ignored cosmological effects (cf.
Chernoff and Finn [16]) in Eq. (5.1a)]. Using the cu-
mulative distribution function for 0 (cf. Sec. III E and
Table I), we find that

V. ASTROPHYSICAL IMPLICATIONS

A. Source rate

hence,

dxx P (0 & x ) =1.84, (5.3)

Chernoff and Finn [16] have shown that the observed
differential rate dN/dMdA of inspiralling binary systems
depends on the cosmological model; consequently, it can
be used to determine the Hubble constant H, the decel-
eration parameter q, and otherwise distinguish between
cosmologies. Here we are interested in the total rate of
observed binary inspiral as an estimate of the sensitiv-
ity of an interferometer, and in this subsection we esti-
mate that rate ignoring cosmological effects. We refer the
reader interested in a rate calculation consistent with an
expanding universe and taking into account evolution of
the binary population and distribution of M in binaries
to Chernoff and Finn [16].

Assume that the rate density (number per unit co-
moving cosmological volume per unit time) of inspiralling
neutron-star binary systems is a constant JV and that
the variation in neutron-star masses is small so that M
is approximately equal to 1.2 Mo (corresponding to two
1.4Mo neutron stars). The expected total rate N of
systems whose SNR p is greater than po is

12Mo) kp

23.0 Mpc
x ) 417Mpc

, 589 Mpc

initial interferometer
advanced interferometer
advanced LIGO detector.

(5.4)

Phinney [4] has given estimates for the number density
of sources per unit time (JV) based on observational and
theoretical arguments. These estimates range from an
ultraconservative 6 x 10 o Mpc yr, to a conserva-
tive 8 x 10 Mpc yr, to an upper limit of 6 x 10 5

Mpc yr i. They are based on the statistics of local
populations of binary pulsars and type Ib supernovae,
and the large range reflects both the small size of the
local sample, uncertainties in our understanding in the
evolution of binary systems, and uncertainties in the se-
lection effects at work in determining the fraction of the
local systems we have direct knowledge of. If we take
the typical threshold pp to be 8, then we find that the
expected rate of detections of inspiralling binary systems
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1s

8x10 SMpc 3yr —~

(41 x 10 s yr
x & 24 yr-'

69 yr

t' W "'(8~',
g1.2M.
initial interferometer
advanced interferometer
advanced LIGO detector.

(5.5)

As commented earlier, to maximize the rate at which
binaries are detected we need to choose f, in order to
maximize E7y3.

For a binary system consisting of a 10Mo black hole
and a neutron star, M 3, and for a binary system
consisting of two 10M' black holes, M 9 (recall that
we are neglecting cosmological effects). Consequently, for
these neutron-star —black-hole (black-hole —black-hole) bi-
naries %goy; 2 Gpc (5 Gpc) for the advanced LIGO
detector. The situation for determining the rate at which
such systems will be detected is a bit more complicated.
Phinney argues that black-hole —black-hole and black-
hole —neutron-star binaries form at rates comparable to
the neutron-star —neutron-star merger rate; however, the
fraction which merge depends on the model dependent
details that vary greatly [4], so no reliable estimate of
the coalescence rate is available for use with Eq. (5.5).

B. Range

An important measure of the sensitivity of a LIGO-
VIRGO-like interferometer is its "range, " i.e. , the dis-
tance to which sources can be observed. The definition
of the range is subtle. Not all inspiralling binaries within,
e.g. , a distance 'R will be identified as such: for some, 0
will be less than 'R/ro, the corresponding SNR p2 will
be less than the threshold p2o, and the signal will be dis-
missed as noise. Similarly, not all inspiralling binaries
outside a distance 'R will fail to be identified by the in-
terferometer: for some 0 will be greater than 'R/ro, the
SNR p2 will be greater than po, and the signal will be
identified as coming from a binary system. Since the
range is a slippery concept, we define a range function
'R~ such that a fraction p of the observable sources fall
within the distance R~:

I, '/"'dxx'P (O') x')
f dxx~P(02 ) x2)

The quantity

(5.6)

f; dxx'P (O' »')
J'o dxx~P (O~ ) x~)

(5.7)

is tabulated in the third column of Table I, and we show

p as a function of 7Z~/72. in Fig. 4. Note that

( fH l"'/8&
1 2Mo po

0.8—

I
j

I I I I
)

I I I I
]

I I I I
I

I I

37.2 Mpc
x ( 673 Mpc

952 Mpc

initial interferometer
advanced interferometer
advanced LIGO detector,

(5.8)

0.6—

0.4—

i.e. , for the advanced IIGO detector approximately /
sources per year will be observed whose distance is greater
than 950 Mpc. Like the rate, the range is sensitive to the
detection strategy so that if we wish to maximize the sen-
sitivity of the interferometer to either we need to choose
a detection strategy that maximizes E7/3.

C. Standard deviation and correlation coefBcients

0.2—

0 —,

0.5
I I I I i I I I I I I I I I I

1 1.5 8

First consider the measurement of A. For all lH and f,
relevant for both the initial and advanced LIGO-VIRGO-
like interferometers, the fractional standard deviation oz
[cf. (3.22a)] of the wave-form amplitude A is p; conse-
quently, the moximum fractional one sigma uncertainty-
in the determination of A is

FIG. 4. We define the range function R~ of a LIGO-like
interferometer as the distance dL, within which a fraction p
of the observable sources are expected to lie. We also de-
fine a characteristic distance R, such that the total rate of
observable sources is 4vr'R JV/3, where JV is the rate density
of sources (which we assume to be uniform). A conservative
estimate of 'R for an advanced LIGO-like interferometer is
420 Mpc. Here we show p as a function of 7Z~/R. For further
discussion see Sec. V B.

= 0.125—
A Po

(5.9)

for both the initial and advanced interferometers. Ad-
ditionally, the correlation coeKcients r~, all have mag-
nitude less than 10, indicating that A is statistically
independent of M, @, and T (i.e. , the random errors in
measurements of A owing to detector noise are not corre-
lated with the corresponding errors in the measurement
of lH, Q, or T).
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Now turn to the measurement of M. Before discussing
the exact results obtained with Eq. (3.22b), we give a
heuristic derivation of the precision with which M can be
determined. Recall that the phase C of the gravitational
wave signal is given by

relation between two sinusoidal functions of the phase,
and is large only as long as the advance in the phase of
m(p, ) is within approximately vr radians of the advance in
phase of m(p) over the course of the observation. Since
ACdepends only on M, we have ~ & ~AC —AC

~

or

C = —2
(T tl-t'"

l 5~)
(5.10) 4~ &~) '

l

dll
5 At

The observation encompasses approximately the last 10
min in the life of the binary system, during which time
the phase advances by

( 4 ( M 10m)&10-'
l1 2Mo &t )

(5.13)

5/s

l10m (5.11)

The argument of the exponential in the odds ratio
[Eq. (2.3d)] is

2 (n, m(p)) + 2 (m(p, ), m(p)) —(m(p), m(p)) . (5.12)

The contribution owing to the term 2 (m(p, ), m(p)) is
much greater than that owing to the noise; consequently,
to a good approximation the odds ratio will be maximized
where this quantity is maximized. Ignoring the frequency
dependence of Sh(f) the term (m(p), m(p)) is the cor-

where 6JH is JH —JH.
Return now to consider the exact results. Equa-

tion (3.22b) gives the fractional standard deviation

o~ jM in terms of the frequency moments f& and p:

o~ /' M l '/' (8&
1.2Moy l p)

2.08 x 10 initial interferometer
X 2.20 x 10 5 advanced interferometer,

(5.14)

where

/ f1/3 f4/31
—2

f1/3 f4/3 l
) f,=100Hz, fi =10Hz

(5.15)

Given a threshold po such that p & po for all observed
sources, Eqs. (5.14) and (5.15) give the maximum frac-
tional standard deviation in the measurement M for any
binary system observed with LIGO-VIRGO-like inter-
ferometers —a phenomenal precision. In interpreting
Eq. (5.14), note that o~/M is inversely proportional to
p, and recall that the SNR p of a binary system observed
in an interferometer of the advanced design is approxi-
mately 26 times greater than the SNR of the same binary
observed in a detector of the initial design [cf. Eq. (4.10)].
The results for the advanced LIGO detectors are identical
to those for the advanced interferometers, except that the
amplitude SNR p for a binary observed in the advanced
detector is 2 /' times greater than that for the same bi-
nary observed in a single advanced interferometer.

In Fig. 5 we show Z~ for both the initial and advanced
interferometers. For the advanced interferometer the to-
tal variation of Z~ is approximately 20%%u0 as f, ranges
from 50 Hz to 1 kHz, while for the initial interferome-
ter the variation is approximately 15%. The optimum
recycling frequency for measurement of M is that which
minimizes ZM, and we see that this is very different than
the choice which maximizes the number of binaries ob-
served (cf. Sec. IVB and Fig. 3): in fact, the optimal
choice of f, for the detection of binaries (in either the
initial or advanced interferometers) is close to the worst
possible choice of f, for the precise measurement of fUf.

As we have pointed out, with observations in a sin- where

/'81

4/)
1.54 x 10 4 s
3.00x10 4s

initial interferometer
advanced interferometer,

(5.16)

gle gravitational-wave interferometer the location of the
source on the sky cannot be determined. If, as has been
suggested, some coalescing binaries result in p-ray bursts
[49, 5], then burst observations may be used to local-
ize the binary system in the sky. The identic. cation
between a gravitational-wave burst from orbital decay
(which takes place before actual coalescence of the binary
components) and a p-ray burst (which takes place at the
time of coalescence) depends on the accuracy with which
we can measure the time of arrival of the p-ray burst
and the "moment of coalescence" T: in all events, T will
be within seconds of the actual moment of neutron-star
disruption and the emission of the p-ray burst. Conse-
quently, we need to know T, the rate of detected binary
coalescence, and the rate of p-ray bursts (the latter both
assumed to be Poisson distributed in time) in order to
evaluate the probability that a correlation in time be-
tween a p-ray burst and a gravitational wave burst is
coincidental. The accuracy with which we can determine
T is given by o.T [cf. (3.22d)]:
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f,=100Hz, f~ =10Hz

1/2

(5.17)

The results for the advanced LIGO detector are the same as those for a single advanced interferometer. The factor
Z7 varies by approximately a factor of 2.5 over the range 50Hz ( f, ( 1000Hz, and is shown (for both the initial
and advanced interferometers) in Fig. 6. Again, the optimal interferometer configuration for precision measurements
of T is very different than that for detection of inspiralling binaries.

The parameter @ depends on the orientation of the source and the detector and the phase of the binary systems
orbit at t = 0. For completeness, we also give the precision with which g can be measured:

(8) 0.257rad initial interferometer

p) ~ 0 338 rad advanced 1nterferometer, (5.18)

where

) f,=100Hz, fi =10Hz

(5.19)

The results for an advanced detector are the same as
those for a single advanced interferometer.

The correlation coefficients r~~, r~z, and r~~ are
nearly independent of f, for both the initial and advanced
LIGO-like interferometers. As mentioned above, the sta-
tistical error in A is essentially uncorrelated with that
in M, Q, or T (i.e. , the correlation coefficients r~, are
for all + 10 ). Figure 7 shows the remaining correla-
tions coefficients r~~, r~7, and r~z for the initial and
advanced interferometers.

D. The low-frequency cutofF

In order to evaluate the covariance matrix we needed to
compute the six frequency moments f7fs, f17fs, f4, fs,
f4fs, and f ifs The evalua. tion of all of these is straight-
forward; however, the calculation of f,7fs deserves spe-
cial attention: at frequencies below the pendulum fre-
quency of the LIGO masses the seismic noise PSD is
proportional to f [cf. Eq. (4.5)]; consequently, f]7/3
diverges as f~ approaches 0 [cf. Eq. (3.20)t.

For any particular application we never encounter the
divergence: there is always a low-frequency cutoff in the
integral 3.20 corresponding to the finite period of the ob-
servation. Even if we had access through an interferome-
ter to the entire life history of a binary system, our model
for its evolution is relevant during only a small part of its
lifetime: for example, we have assumed that the orbit is
circular for all times (when in fact gravitational radiation
may be responsible for circularizing it), that the evolu-
tion of the orbit is due exclusively to the gravitational
forces acting between the two components, and that the
two bodies are bound in a binary into the infinite past.
Similarly, our model of the detector noise PSD Sh, (f) is

5%0
f (Hz)

10

FIG. 5. The fractional standard deviation o~/M of the
measured mass JH depends on the distance to the source,
the relative orientation of the source and the interferometer,
and a factor Z~(f, ) that depends on the interferometer con-
figuration [i.e., the recycling frequency f„cf., Eq. (5.15) and
Sec. V C]. Here we show Z~ as a function of f, for initial and
advanced LIGO-like interferometers. In order to maximize
the precision with which JUf can be determined, the recycling
frequency should be chosen to minimize Z~. The correspond-
ing recycling frequency differs from that which should be cho-
sen to maximize the rate of sources detected (cf. Fig. 3). For
more details, see Sec. VC.
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m(t) = Acos27r fot (5.20)
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t' = —w lr'r —tl
(5.22)

In terms of t' , t"e signal can be expressed

h(t) = cos(C + p)

@(t') = 2~J"t',
/ 1

2'JH

Thus, the signal from an in
l'14 hietat from a

inspiralling binary is very much
monochromatic source of rad' t'

save that (l~ the si nal
ra ia ion,

e signa amplitude tends to zero as the

(5.23a)

(5.23b)

(5.23c)

No matter how small As is compared to the power in
the noise, the signal can alway b d's e iscerne given a ion
enough observation time. Th 'te si uation with binary in-
spira is similar consider the transformation of the t'
coordinate [25]

e ime
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stretched time t' tends to —oo, (2) the detector noise
amplitude tends to oo as the stretched time t' tends to
—oo, and (3) the signal ends at t' = 0. As a result, as
long as the ratio of the signal amplitude to the noise PSD
does not decrease too rapidly with decreasing frequency
(the precise rate determined by the rate at which the fre-
quency changes with time), then pz for an inspiralling
binary system should increase without bound as the ob-
servation period extends into the infinite past. This is
the role that the moment f7/3 plays in Eq. (2.4) for p: if
the detector noise PSD increases as or less rapidly than
f ~/3 as f ~ 0, then fT/3 diverges as the observation
period is extended into the infinite past (i.e. , as the cut-
ofF frequency f~ tends to zero) and the SNR increases
without bound. In the case of LIGO, the PSD owing to
seismic noise increases as f 4 at frequencies below the
suspension pendulum frequency, so that even an infinite
observation period leads to a finite SNR.

Like the SNR, the frequency f0 of a truly monochro-
matic signal [i.e. , Eq. (5.20)] can be determined to arbi-
trary precision given a sufBciently long observation pe-
riod. By analogy, this is equivalent to the determination
of the mass parameter M of an inspiralling binary sys-
tem [cf. Eq. (5.23c)]. Consequently, we expect that as
long as the ratio of the signal amplitude to the noise PSD
does not increase too rapidly, the variance in the ~ de-
creases to zero as the observation period extends into the
infinite past. Too rapidly, in this case, is f rr/3. Thus,
even though the signal power in a given bandwidth may be

much tower than the noise power in the same bandutidth,
the information present can still play an important rote in
determining the precision with which the parametrization
of the signal can be determined.

Again, we emphasize that these conclusions refer only
to the idealized case of a circular binary system of two
point masses evolving exclusively owing to the emission
of quadrupole gravitational radiation. The relevance of
these conclusions is that the limit f~ -+ 0 (i.e., f17/3 +

I

oo), which may seem far from the reality of observation,
is in fact very close to that which ean be attained in LIGO
operating in a regime where atl our approximations are
valid.

In the limit fi —+ 0 (fiz/3 ~ oo), the variance cT&

and the correlation coefficient r;~ vanish, corresponding
to the determination of M to infinite precision. The
remaining variances are [cf. Eqs. (3.22a), (3.22e), and
(3.22d)]

2= —2
oo&g = p )

f i/3 —f4/3

2 2 2 —2
~oT = 4& p fi/3 —f4/3

(5.24a)

(5.24b)

(5.24c)

and the remaining correlation coefficients are [cf.
Eqs. (3.23b), (3.23c), and (3.23f)]

~r„y =0,
~rqT =0,

f4/3
~TQT

f i/3

(5.25a)

(5.25b)

(5.25c)

In this limit, the moments fq/3, f4/3, and fr/3 describe
completely the precision with which A, g, and T can be
measured. For LIGO-VIRGO-like interferometers, these
moments change negligibly when we pass from f~ = 10 Hz
to the limit of fi = 0 Hz [recall that we are assuming
Sh, (f) oc f 4 at frequencies below the resonant frequen-
cies of the seismic isolation circuit]; consequently, in ob-
serving more than the last several minutes of binary in-
spiral the SNR of the observed signal is unchanged, and
the variances and correlation coeKcients are independent
of the details of the ultralow-frequency behavior of the
inter ferometers.

By analogy with Z@ and Zz we define Z~ and ZT ..

( f„,
I fi/3 f4/3)

f,/.
~fr/3 f4/3 ~ f =100H, fg=lOH

1/2—2

f,=100Hz, fI =10Hz
f1/3 f4/3

oo T f1/3 f4/3

0.232 rad initial interferometer

q p) ~ 0.190rad advanced interferometer,

(8l 1.32 x 10 4 s initial interferometer
~q pp~ 2.71 x 10 4 s advanced interferometer,

- 1j2

(5.26a)

(5.26b)

(5.26c)

(5.26cl)

The factor ~ET is shown together with ZT in Fig. 6 for
both the initial and advanced interferometers. Over the
range 50Hz ( f, ( 1 kHz the difFerences between ~Z,
and Z; are small.

Since the SNR is unchanged as the observation period
expands from the last several minutes of binary inspiral

to include the entire lifetime of the binary, observations
over more than the last several minutes of the lifetime of
a binary system will have an insignificant efFect on the
number of binaries observed [ef. Eq. (5.5)]. Comparing
the expressions given above for ~cr, with those for c7, [cf.
Eqs. (3.22a) —(3.22d)] shows that increasing the observa-
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tion period increases the precision with which T can be
determined by approximately 10% and the precision with
which Q can be measured a factor of 2.

VI. CONCLUSIONS

Inspiralling binary systems of compact objects are
regarded as the most certain observable source of
gravitational radiation for the Laser Interferometer
Gravitational-Wave Observatory (LIGO). As a start to-
ward understanding the capabilities of the LIGO instru-
ments in observations of inspiralling binary systems, we
have investigated the sensitivity of a single interferome-
ter of the LIGO type to the gravitational radiation from
inspiralling binary systems in the quadrupole approxima-
tion.

Observation of binary inspiral in a single LIGO-
VIRGO-like interferometer can, in principle, determine a
characteristic mass JH, signal amplitude A, time T, and
phase @. The mass M is a function only of the masses
of the system's components and its cosmological redshift.
The amplitude A is inversely proportional to its luminos-
ity distance and depends also on a function of four angles
describing the relative orientation of the binary and the
interferometer. The time T is related to the moment of
binary coalescence. Finally, @ is related to the phase of
the binary system at a fixed moment of time and is also
a function of the relative orientation angles.

The probability that the detector response is consistent
with the presence of a signal from an inspiralling binary
system is related to the signal-to-noise ratio (SNR) p that
characterizes the observation. In practice, a threshold po
is chosen and we assert that a signal is present in the de-
tector output only if p & po. We characterize our uncer-
tainty in the parameters p = fA, M, Q, T) that describe
the detected binary system by defining volumes V(P) in
parameter space such that p E V(P) with probability P.

When p is large, the probability density from which
V(P) is constructed is a multivariate Gaussian. Conse-
quently, the determination of V(P) is equivalent to the
determination of the several variance and correlation co-
efBcients that describe the Gaussian. These coefBcients
in turn describe the statistical uncertainty in the deter-
mination of A, M, g, and T, and the correlation in the
errors in each.

For observations of binary systems in LIGO-VIRGO-
like interferometers, the expected SNR, variance, and
correlation coefBcients may be expressed in terms of the
mode of the probability distribution P(p) and several
moments of the noise PSD of the interferometer. We
have used a detailed model of the PSD for both the ini-
tial and advanced LIGO interferometers configured for
standard recycling, and have evaluated the moments of
the PSD, the expected SNR, variances, and correlation
coeFicients as functions of the recycling knee frequency.

The two interferometers of the LIGO detector share
nearly the same orientation. Consequently they will act
similarly to a single, more sensitive interferometer. In
addition to providing results for a single interferometer
of the LIGO-VIRGO type (either initial or advanced), we
also express our results for the LIGO two-interferometer

network in the limit that the interferometers share ex-
actly the same orientation.

From the expected SNR and an estimate for the cos-
mological rate density of inspiralling binary systems we
have calculated the rate of observed binary inspiral events
as a function of the SNR threshold. We find that for
the advanced IIGO detector a conseruafive estimate of
the rate of observed binary neutron-star inspirat events
is 69 yr, of ivhich 7 per year uritt be from binaries af
distances greater than 950 Mpc Th. is is important for
observational cosmology, since the differential rate (i.e. ,

dN/dAdM) depends on the Hubble constant and other
cosmological parameters [16].

For observed binary systems, the fractional standard
deviation in the characteristic wave-form amplitude is
equal to 1/p: if the threshold p is 8, then the fractional
la uncertainty in the measured amplitude will be less
than 12.5% for sources observed in either LIGO or LIGO-
like interferometers. The chirp mass can be measured
to phenomenal precision: again, if the threshold p is 8
then the fractional lo' uncertainty in M will be less than
2.2 x 10 5 for binary neutron-star systems observed in
the advanced LIGO detector. We have also calculated
the precision with which T and @ can be determined.

The optimum detector configuration for the observa-
tion of binary inspiral depends sensitively on the goal of
the observation. For example, if the object is to maximize
the rate of observed binary systems without constraining
the uncertainties in A, M, T, and @, then one detector
configuration is clearly favored. On the other hand, if
the object is to be able to characterize as precisely as
possible one of the observables (e.g. , ~), while allowing
that some otherwise observable sources may be missed
entirely, then another detector configuration is preferred.
We have given a concrete formulation to the question
of optimum interferometer configuration and answered it
in the context of our model for the interferometer noise
PSD.

The quadrupole approximation is useful for our
LIGO-VIRGO appraisals; however, the neglect of post-
Newtonian contributions (including spin-orbit and spin-
spin interactions) to the gravitational radiation luminos-
ity and wave form is a weakness of our estimates and
should be remedied in a more detailed appraisal of inter-
ferometer sensitivity. Including these interactions will
increase the information that can be extracted from grav-
itational radiation observations of binaries over that de-
scribed here. The formalism that we have developed,
where the SNR, variances, and correlation coefficients
are all expressed in terms of moments of the interfer-
ometer noise PSD, should prove valuable in that regard:
it is readily extended to encompass an arbitrarily more

Preliminary Monte Carlo investigations by Cutler [50] sug-
gest that the inclusion of some of the terms neglected in our
analysis increase the fractional lo. uncertainty in M by no
more than a factor of 10 over our estimate, and have a much
smaller efFect on A, T, and g.
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sophisticated gravitational radiation wave form that is
richer in information regarding the source than the one
we have studied here.
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